首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
利用NGDC720地磁模型提供的磁异常数据, 分析了菲律宾海板块磁异常特征, 进而对磁异常进行多尺度分解, 给出了研究区岩石圈深部和浅部磁异常.结合热流分布特点和磁异常信息, 进一步分析了研究区引起磁异常成因.菲律宾海板块区域的磁异常既反映了该区域岩石圈浅部的构造特征, 也隐含深部构造信息.在西菲律宾海盆以及大东脊构造区, 浅部构造磁异常信息较好地继承了深部构造特征, 反映这些区域岩石圈的整体性特征.四国海盆与帕里西维拉海盆浅部磁异常信息显示了与近代(约10Ma)扩张轴一致的特征, 且磁异常与海底构造走向不一致; 而深部异常显示的帕里西维拉海盆磁异常走向与西菲律宾海盆一致的信息, 可能指示帕里西维拉海盆岩石圈曾与西菲律宾海盆有过类似的演化史.   相似文献   

3.
扬子板块的大地构造演化与区域成矿规律   总被引:1,自引:0,他引:1  
  相似文献   

4.
华北板块东缘晚古生代火山活动及其大地构造含义   总被引:4,自引:0,他引:4  
张开均 《中国煤田地质》1998,10(3):10-11,20
在华北板块东缘,从皖北,鲁西到冀中,辽东,分布着一条长达千余km的晚古生代北北东向火山活动带,已发现的火山岩主要为正常火山碎屑岩和沉积火山碎屑岩,岩石化学分析表明为钙碱系列中(酸)性火山岩,在华北晚古生代煤系中记录了这种强烈的火山活动,包含有丰富的火山碎屑以及由火山灰堆积蚀变而成的煤矸层(tonstein)。作者认为,在晚古生代,华北板块东缘可能存在一火山弧链,即华北板块东缘为一主支大陆边缘。  相似文献   

5.
张永康 《华东地质》2008,(3):162-167
扬子板块东北缘存在四条主要的中元古代变质带,自南向北依次为江南变质带、沿江变质带、云台-张八岭变质带和连云港-泗阳变质带.它们分别为中元古代的古弧后盆地、火山岛弧、裂谷及弧前盆地,扬子板块东北缘中元古代为活动大陆边缘构造体系.苏(北)胶(南)变质造山带应解体,其中一部分属扬子大陆边缘体系.  相似文献   

6.
<正> 一、湖北省大地构造动定转化历史湖北省大地构造演化历史明显分为三大阶段。早元古代-青白口纪(Pt_1-Qn)为地槽阶段,地壳相对活动。距今25亿年-7.0亿年,时限18亿年。其中:早元古代为地槽初动  相似文献   

7.
新疆大地构造基本格架   总被引:23,自引:6,他引:23  
成守德  张湘江 《新疆地质》2000,18(4):293-296
1 新疆前震旦纪古构造 前震旦纪新疆可分为西伯利亚、准噶尔-哈萨克斯坦、塔里木、柴达木、可可西里、藏滇等6个古陆区,目前认为,其间被元古洋盆所分隔。元古宙末期,元古洋盆消亡,形成联合古陆,从新元古代末至早古生代早期该古陆解体,形成古亚洲洋及后来的特提斯洋,进入古生代、中-新生代强烈的板块活动阶段(附图1)。1.1 西伯利亚古陆区 (1)阿尔泰古陆 出露最老地层为古-中元古代克姆齐群,岩性以角闪岩-片麻岩-混合岩为主,局部见麻粒岩,原岩为陆源碎屑岩、酸性及基性火山岩夹碳酸盐岩,形成于拉张环境,同位素测年多…  相似文献   

8.
台湾大地构造环境与地震   总被引:1,自引:0,他引:1  
刘劲鸿 《吉林地质》2000,19(1):13-17,85
台湾、吕宋和琉球等岛弧区是中新世以来地震多发区.1999年9月21日台湾南投大地震以其震级大、震期长和损失惨重引起国内外关注.本文以台湾所处大地构造环境特征探讨发震机制和9.21大地震对地学界的警示.  相似文献   

9.
秦岭大地构造分区的遥感影像判读   总被引:1,自引:0,他引:1  
根据遥感影像的纹理结构及其相对应的地球物理场特征,秦岭地区可自然分割出四个构造景观单元。即:东秦岭盆岭构造区,西秦岭隆凹构造区,南秦岭叠覆构造区和镇淅盆隆构造区。构造影像单元的拼接组合关系,一定程度上反映了华北板块,扬子板块,松潘一甘孜地块,秦岭一大别地块构造域的地质演化史。即:晋宁一加里东构造旋回期,扬子板块与外来地块(秦岭-大别地块,松潘一甘孜地块)实现对接形成南中国联合大陆板块;自海西构造运  相似文献   

10.
概述了中国东南沿海大地构造性质,对有争议的东南沿海中段与南段的大地构造界线划分问题提出了新的看法,在此基础上将整个东南沿海划分出3个Ⅰ级、7个Ⅱ级和18个Ⅲ级构造单元,并论述了它们的主要特征。  相似文献   

11.
The Philippine Sea Plate is located at the convergence zone of the Eurasian Plate,the Pacific Plate,and the Indo-Australian Plate.This paper divides the Philippine Sea Plate into two second-order tectonic units and eight third-order tectonic units by summarizing the marine geological,geophysical,and submarine geomorphological data of the Philippine Sea Plate collected for years and referring to the seafloor spreading theory and the trench-arc-basin system.The two second-order tectonic units are the West Philippine Sea block and the Izu-Bonin-Mariana arc-basin system.The former includes the West Philippine Basin,the Huatung Basin,the Daito Basin,and the Palau Basin,while the latter consists of the Kyushu-Palau Ridge,the Shikoku-Parece Vela Basin,the Izu-Bonin Arc,and the Mariana Arc.Furthermore,this study concludes that the Philippine Sea Plate has undergone three stages of tectonic evolution,namely the early stage of the evolution of marginal basins with Cretaceous basement(Early Cretaceous),the middle stage of the spreading of the West Philippine Basin(Eocene),and the late stage of the subduction of the Izu-Bonin-Mariana arc-basin system(Oligocene-present).The Kyushu-Palau Ridge is a window to discover the tectonic evolution of the Philippine Sea Plate due to its unique geographical location.  相似文献   

12.
It is important to know the shape of a subducting slab in order to understand the mechanisms of inter-plate earthquakes and the process of subduction. Seismicity data and converted phases have been used to detect plate boundaries. The configuration of the Philippine Sea slab has been obtained at the western part of southwestern Japan. At the eastern part of southwestern Japan, however, the configuration of the Philippine Sea slab has not yet been confirmed. A spatially high-density seismic network makes it possible to detect the boundaries of the Philippine Sea slab. We used a spatially high-density temporal seismic array in the area. The configuration of the Philippine Sea plate is obtained at the eastern part of southwestern Japan using the temporal seismic array and permanent seismic network data and comparing the seismic structure obtained from the results of refraction surveys. The configuration of the Philippine Sea plate obtained by this study does not bend sharply compared to previous models obtained from receiver function analyses. We delineated the upper boundary of the slab to a depth of about 45 km. The weak image of the boundary, which corresponds to the upper mantle reflector beneath the source area of the 2000 Western Tottori earthquake, was detected using the spatially dense array.  相似文献   

13.
A seismic experiment with six explosive sources and 391 seismic stations was conducted in August 2001 in the central Japan region. The crustal velocity structure for the central part of Japan and configuration of the subducting Philippine Sea plate were revealed. A large lateral variation of the thickness of the sedimentary layer was observed, and the P-wave velocity values below the sedimentary layer obtained were 5.3–5.8 km/s. P-wave velocity values for the lower part of upper crust and lower crust were estimated to be 6.0–6.4 and 6.6–6.8 km/s, respectively. The reflected wave from the upper boundary of the subducting Philippine Sea plate was observed on the record sections of several shots. The configuration of the subducting Philippine Sea slab was revealed for depths of 20–35 km. The dip angle of the Philippine Sea plate was estimated to be 26° for a depth range of about 20–26 km. Below this depth, the upper boundary of the subducting Philippine Sea plate is distorted over a depth range of 26–33 km. A large variation of the reflected-wave amplitude with depth along the subducting plate was observed. At a depth of about 20–26 km, the amplitude of the reflected wave is not large, and is explained by the reflected wave at the upper boundary of the subducting oceanic crust. However, the reflected wave from reflection points deeper than 26 km showed a large amplitude that cannot be explained by several reliable velocity models. Some unique seismic structures have to be considered to explain the observed data. Such unique structures will provide important information to know the mechanism of inter-plate earthquakes.  相似文献   

14.
《China Geology》2021,4(4):541-552
The intersection of the Kyushu-Palau Ridge (KPR) and the Central Basin Rift (CBR) of the West Philippine Basin (WPB) is a relic of a trench-trench-rift (TTR) type triple-junction, which preserves some pivotal information on the cessation of the seafloor spreading of the WPB, the emplacement and disintegration of the proto-Izu-Bonin-Mariana (IBM) Arc, and the transition from initial rifting to steady-state spreading of the Parece Vela Basin (PVB). However, the structural characteristics of this triple-junction have not been thoroughly understood. In this paper, using the newly acquired multi-beam bathymetric, gravity, and magnetic data obtained by the Qingdao Institute of Marine Geology, China Geological Survey, the authors depict the topographic, gravity, and magnetic characteristics of the triple-junction and adjacent region. Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities. Based on these works, the morphological and structural features and their formation mechanisms are analyzed. The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley, which extends eastward and incised the KPR. The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB, manifesting as a series of NNE-SSW- and N-S-trending ridges and troughs, which were produced by the extensional faults associated with the initial rifting of the PVB. The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N–15°30′N and 13°30′N–14°N. Combined with previous authors’ results, we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR. The eastward propagation of the CBR destroyed the KPR, of which the magmatism had decayed or ceased at that time. The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR. Adjacent to the triple-junction, the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center. Whereas south of the triple-junction, the KPR was destroyed by the E-W-directional extensional faulting on its whole width.©2021 China Geology Editorial Office.  相似文献   

15.
《地学前缘(英文版)》2020,11(4):1231-1251
The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS.  相似文献   

16.
INTRODUCTIONHydrogenetic marine ferromanganese crusts havereceived much attention over the past several dec-ades ,not only as potential mineral resources enrichedin Mn,Co ,Cu, Ni ,and Pt ( Manhei m,1986) but al-so as potential paleoceanographic records during theirgrowth ( Banakar et al ., 2003 ; Mc Murtry et al .,1994 ; Hein et al .,1992) .Former research has demonstrated that varia-tions in the chemical composition of seamount ferro-manganese crusts canreflect theinfluence of changin…  相似文献   

17.
东菲律宾海新型富铁锰结壳的古海洋环境记录   总被引:1,自引:0,他引:1  
尝试恢复东菲律宾海新型深水水成富铁锰结壳典型样品生长过程中所记录的古海洋环境.通过对其微间距取样样品的地球化学和铀系年代学综合研究, 得到了该结壳的3个主要生长阶段及其对应的古海洋环境.第一阶段为晚中新世晚期-早上新世的结壳快速生长期, 壳层结构疏松并含有较多的火山碎屑物质, 对应着中中新世初期-上新世早期的南极底流活跃和降温; 第二阶段为早、中上新世的结壳生长间断期, 形成深海粘土沉积, 表明此时南极底流的减弱和升温; 第三阶段为中上新世以来的结壳缓慢生长期, 指示着南极底流的再次活跃和强降温, 其强度和范围均超过第一阶段, 更利于致密和高纯壳层的发育.研究区的这段古海洋学历史在以往研究中一直不甚明了.   相似文献   

18.
南海北部陆缘盆地形成的构造动力学背景   总被引:2,自引:0,他引:2  
摘要:南海北部陆缘盆地处于印度板块与太平洋及菲律宾海板块之间,但三大板块对南海北部陆缘盆地的影响是不同的。通过对三大板块及古南海演化的研究,可知南海北部陆缘地区应力环境于晚白垩世发生改变。早白垩世处于挤压环境,晚白垩世以来转变为伸展环境并且不同时期的成因不同。晚白垩世-始新世,华南陆缘早期造山带的应力松弛、古南海向南俯冲及太平洋俯冲板块的滚动后退导致其处于张应力环境。始新世时南海北部陆缘裂陷盆地开始产生,伸展环境没有变,但因其是由太平洋板块向西俯冲速率的持续降低及古南海向南俯冲引起的,南海北部陆缘盆地继续裂陷。渐新世-早中新世,地幔物质向南运动及古南海向南俯冲导致南海北部陆缘地区处于持续的张应力环境;渐新世早期南海海底扩张;中中新世开始,三大板块开始共同影响着南海北部陆缘盆地的发展演化。  相似文献   

19.
We conducted rock magnetic and paleomagnetic research on two deep-sea sediment cores from the west Philippine Sea, located to the east of Benham Rise with the length of 4 m and water depth of over 5000 m. At the bottom of core 146 occurs a reversal of inclination and deflection of relative declination, which is recognized as Brunhes-Matuyama Polarity Boundary (MBPB). No reversal occurs in core 89, which implies a younger bottom age than that of core 146. Rock magnetic results reveal magnetic uniformities in mineralogy, concentration and grain size along the two cores, thus relative paleointensity variations are acquired. The three normalizers-anhysteresis remanent magnetization (ARM), magnetic susceptibility (k) and saturation isothermal remanent magnetization (SIRM) are used for normalization to obtain relative paleointensities. The three normalization results are averaged to indicate the paleoitensity of the cores and are further stacked together to get a synthetic curve for west Philippine Sea (named asWPS800 in this paper). Based on the magnetic correlation between cores and paleointensity to Sint800, we transfer the changes of rock magnetic parameters from depth to time. Furthermore, the astronomically tuned oxygen isotope from ODP site 1143 in the south China Sea is used for the glacial and interglacial indicator. Three concentration proxies (ARM, k and SIRM) and grain size indicators (k ARM/SIRM, k ARM/k) are examined according to the paleointensity-assisted chronology. The grain size changes in the two cores display a consistent pattern with the climatic changes embodied by oxygen isotope. The magnetic sizes are usually coarser in glacial periods and finer in interglacial times, which may reflect the influence of chemical erosion rather than fining from sea level rising on the source sediment. Furthermore, the sub-peaks and sub-troughs in interglaciations almost correspond with that of oxygen isotope records, which means sedimentation can reflect the subtle changes in interglaciations. This kind of revelation of climatic fluctuation by magnetic size is also found in the South China Sea, which shows a common pattern of magnetic signals to climate at least within East Asia. The concentration of ARM (representing more about fine grain) also shows similar response to glacial and interglacial cycles, that is, high in interglacial cycle and low in glacial cycle; but k and SIRM (reflecting more about coarse grain) lack the response to the climatic cycles. At the same time, S-ratio lacks the correlation with aeolian dust record and rhythmic changes, indicating the dominant source of main magnetic carrier (low coercivity magnetite) is the suspended matter instead of dust. The decreasing trend of sedimentation rate from west to east also reveals that the sediments are mainly from west Luzon and adjacent land. Grain sizes first became coarse and then stable around 400 ka B.P., and at the same time all the magnetic contents lowered and amplitude of magnetic mineral changes increased. The magnetic transition around 400 ka B.P. is simultaneous with the decreases of carbonate content, reflecting a global carbonate dissolution event, i.e. mid Brunhes event. The synchronization of magnetic content and grain size with climatic cycles of glacials and interglacials imply the validity of paleointesnityassisted chronology. Also, the response of rock magnetic signals to stable oxygen isotope changes and carbonate variation reveals that rock magnetismmethod can be an effective tool for paleoclimatic and paleoceanographic research. __________ Translated from Quaternary Sciences, 2007, 27(6): 1040–1052 [译自 : 第四纪研究]  相似文献   

20.
为了解东菲律宾海新型铁锰结壳中元素的赋存状态, 采用化学提取方法对3个结壳样品进行了物相分析.不同类型结壳中成矿和稀土元素的赋存状态总体一致, 表明它们形成于相近的地质和海洋环境中.成矿元素中的Fe和Cu绝大部分赋存在残渣态中, Mn、Co和Ni则主要赋存在锰氧化物结合态、有机结合态和残渣态中, 并且埋藏型结壳样品锰氧化物结合态中赋存了相对更高比例的成矿元素.三价稀土元素主要集中在锰氧化物结合态中.两个沉积物表层结壳样品中的Ce主要集中在残渣态中.而埋藏型结壳样品中的Ce则主要赋存在锰氧化物结合态中, 这可能与该样品此相态中赋存了相对较多的Mn有关.呈碳酸盐结合态和有机结合态的稀土元素含量仅各占稀土总量的1%左右, 表明两者对结壳中稀土元素的富集作用很小.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号