首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase state of fluid in the system H3BO3–NaF–SiO2–H2O was studied at 350–800 °C and 1–2 kbar by the method of synthetic fluid inclusions. The increase in the solubility of quartz and the high reciprocal solubility of H3BO3 and NaF in water fluid at high temperatures are due to the formation of complexes containing B, F, Si, and Na. At 800 °C and 2 kbar, both liquid and gas immiscible phases (viscous silicate-water-salt liquid and three water fluids with different contents of B and F) are dispersed within each other. The Raman spectra of aqueous solutions and viscous liquid show not only a peak of [B(OH)3]0 but also peaks of complexes [B(OH)4], polyborates [B4O5(OH)4]2–, [B3O3(OH)4], and [B5O6(OH)4], and/or fluoroborates [B3F6O3]3–, [BF2(OH)2], [BF3(OH)], and [BF4]. The high viscosity of nonfreezing fluid is due to the polymerization of complexes of polyborates and fluorine-substituted polyborates containing Si and Na. Solutions in fluid inclusions belong to P–Q type complicated by a metastable or stable immiscibility region. Metastable fluid equilibria transform into stable ones owing to the formation of new complexes at 800 ºC and 2 kbar as a result of the interaction of quartz with B-F-containing fluid. At high concentrations of F and B in natural fluids, complexes containing B, F, Si, and alkaline metals and silicate-water-salt dispersed phases might be produced and concentrate many elements, including ore-forming ones. Their transformation into vitreous masses or viscous liquids (gels, jellies) during cooling and the subsequent crystallization of these products at low temperatures (300–400 °C) should lead to the release of fluid enriched in the above elements.  相似文献   

2.
Uraninite solubility in 0.001–2.0 m HCl solutions was experimentally studied at 500°C, 1000 bar, and hydrogen fugacity corresponding to the Ni/NiO buffer. It was shown that the following U(IV) species dominate in the aqueous solution: U(OH)40, U(OH)2Cl20, and UOH Cl30 Using the results of uraninite solubility measurement, the Gibbs free energies of U(IV) species at 500°C and 1000 bar were calculated (kJ/mol): −9865.55 for UO2(aq), −1374.57 for U(OH)2 Cl20, and −1265.49 for UOH Cl30, and the equilibrium constants of uraninite dissolution in water and aqueous HCl solutions were estimated: UO2(cr) = UO2(aq), pK 0 = 6.64; UO2(cr) + 2HCl0 = U(OH)2 Cl20, pK 2 = 3.56; and UO2(cr) + 3HCl0 = UOHcl30 + H2O, pK 3 = 3.05. The value pK 1 ≈ 5.0 was obtained as a first approximation for the equilibrium UO2(cr) + H2O + HCl0 = U(OH)3Cl0. The constant of the reaction UO2(cr) + 4HCl0 = UCl40 + 2H2O (pK 4 = 7.02) was calculated taking into account the ionization constants of U Cl40 and U(OH)40, obtained by extrapolation from 25 to 500°C at 1000 bar using the BR model. Intense dissolution and redeposition of gold (material of experimental capsules) was observed in our experiments. The analysis and modeling of this phenomenon suggested that the UO2 + x /UO2 redox pair oxidized Au(cr) to Au+(aq), which was then reduced under the influence of stronger reducers.  相似文献   

3.
The partitioning of the rare earth elements between a peraluminous monzogranitic melt and a chloride-bearing, sulfur- and carbon dioxide-free, aqueous volatile phase was examined experimentally as a function of chloride and major element concentrations at 800 °C and 200 MPa. The light rare earth elements (e.g. La, Ce) partition into the aqueous volatile phase to a greater extent than the heavy rare earth elements (e.g. Yb, Lu). Distribution of the rare earth elements and the major elements H, Na, K, Ca, and Al between the melt phase (mp) and aqueous volatile phase (aq) is a function of the chlorine concentration in the system, and our data are consistent with the rare earth and major elements occurring as chloride complexes in the aqueous volatile phase. Apparent equilibrium constants for experiments at 800 °C and 200 MPa, K REE,Na aq/mp , expressed as the ratio of the concentration of a given rare earth element in the aqueous volatile phase to the concentration of the same element in the melt phase, divided by the cubed ratio of sodium in the aqueous volatile phase to the concentration of sodium in the melt phase, decrease systematically with increasing atomic number from K La,Na aq/mp = 0.41(±0.03) to K Lu,Na aq/mp =0.11(±0.01), except for Eu. These experimentally derived apparent equilibrium constants for the rare earth elements can be used in a numerical simulation of magmatic volatile exsolution. The simulation gave results consistent with the elemental distribution in the potassic alteration zone of a deep porphyry copper deposit, but higher concentrations of heavy rare earth elements are released into the magmatic aqueous solution than are captured in the secondary mineralization. Received: 1 November 1999 / Accepted: 7 June 2000  相似文献   

4.
At 750°C and 4000 bar scapolite is stable relative to plagioclase + calcite over the range of plagioclase compositions An53–An83. The assemblage plagioclase + scapolite + calcite is stable relative to plagioclase + calcite over the ranges of plagioclase composition An48-An53 and An83–An91.5. When NaCl is present in the coexisting fluid the range of scapolite compositions stable relative to plagioclase increases. High mole fractions of NaCl in the fluid stabilize scapolite relative to plagioclases from An25 to An87 in the presence of excess calcite. Determination of the Cl(Cl + CO3) ratios of the synthetic scapolites shows that the range of stable scapolite compositions is significantly larger than heretofore proposed, and that even the chloride and carbonate bearing scapolites must be considered a four component solid solution. The KD for the exchange of NaCl and CaCo3 between coexisting scapolite, fluid and carbonate is given by the equation In KD = (?0.0028) [Al(Al + Si)]?5.5580. This equation implies that Cl-poor natural scapolites coexisted with fluids low in NaCl, and that regional occurrences of Cl-rich scapolites are likely to represent metamorphosed evaporite sequences.  相似文献   

5.
Oxygen isotopic exchange between quartz and water, using a novel technique in which both 18O/16O and 17O/16O fractionations were measured, yielded an equilibrium fractionation Δ18 = 9.0 at 250°C and 15 kbar. The reaction proceeds predominantly by solution of fine grains and growth of larger grains. Exchange by solid-state diffusion is immeasurably slow at this temperature. Under the same experimental conditions, cristobalite behaves quite differently, becoming transformed to sub-micron quartz crystals in a few minutes. The phase transformation is accompanied by a kinetic isotope effect yielding quartz in isotopic disequilibrium with water. It is possible that such disequilibrium products are also formed in other experiments involving phase transitions or mineral syntheses.  相似文献   

6.
Literature thermodynamic data on species and particles existing in the heterogeneous PdO-H2O system were checked for consistency, and the equilibrium constants for dissolution of palladium oxide and hydroxide in water and for Pd2+ (aq) hydrolysis were recommended. Δ f G 298.15 ° obtained in this work for Pd2+(aq) sharply differs (no less than by 6 kJ/mol) from values that are reported in fundamental thermodynamic reference books and based on experimentally measured palladium electrode potential at 25°C. Detailed examination of literature data on the thermodynamic properties of compounds in the Cl-Pd(aq) system is required to account for revealed inconsistency.  相似文献   

7.
Laboratory experiments were carried out continuously for 30–35 days at 25 and 5°C in three different buffer solutions of pH 4.0, 2.2 and 8.4 to calculate dissolution rates of two minerals, calcite (CC) and dolomite (DM) and two rocks, leucogranite (LG) and gneiss (GN) from the Himalayan range. Calculated rates in terms of release of targeted elements versus time (Ca for CC; Mg for DM; Si for LG and GN) demonstrate direct correlation with temperature. Dissolution rates are higher at 25°C compared to 5°C. CC and DM were experimented only at pH 8.4 and results show that both undergo congruent dissolution with CC dissolving ∼5 times faster than DM. Ca and Mg exhibit average apparent activation energies (E a) of 13.98 and 9.98 kcal mol−1 respectively at pH 8.4 which reflects greater sensitivity of CC dissolution than DM dissolution towards an increase in temperature. Scanning Electron Microscope attached with Energy Dispersive X-Ray Analyser (SEM-EDX) data indicates that dissolution is controlled primarily by surface-reaction processes, with dislocation sites contributing maximum to the dissolution. As compared to CC and DM dissolution, LG and GN undergo relatively slower incongruent dissolution with precipitation of some secondary minerals as revealed from X-ray diffractometer (XRD) results. Rates of dissolution of LG is maximum at pH 2.2, moderate at pH 8.4 and least at pH 4.0, whereas GN shows maximum dissolution at pH 2.2, moderate at pH 4.0 and least at pH 8.4. A comparison in dissolution behavior of LG and GN at experimental conditions reveals that increase in Si-release rate in the temperature range between 5 and 25°C is maximum at pH 8.4 (∼3.4–4.5 times), moderate at pH 4.0 (∼3–1.8 times) and least at pH 2.2 (∼1.0–1.5 times). Within the experimental temperature range, calculated values of E a for Si release during LG and GN dissolution advocates positive correlation with pH. A substantial decrease in initial values of Brunauer–Emmett–Teller (BET) surface area of DM, LG, and GN has been encountered at the end of the experiment, except for CC for which an increase is observed. The study clearly demonstrates the dissolution behavior of pure minerals and rocks under controlled conditions. The dissolution rates assume enormous significance for the release of trace elements from rocks/minerals to the reacting water.  相似文献   

8.
Sodium-rich metasomatism in the upper levels of the mantle has been modelled by reacting pyrolite with alkali-bearing H2O fluids containing minor CO2 and concentrations of Na2O and Na2O + K2O (K/K + Na = 0.1 ) up to 4.0 g alkalies/10 g H2O at 20 kbar and 950°C. With increasing alkali concentration, the amounts of amphibole (pargasite-edenite) and olivine increase as orthopyroxene and clinopyroxene decrease. Amphiboles show progressive increases in Na (and K) and Si concentrations and decreases in Al and Ca concentrations suggesting the dominant substitution mechanism is (Na, K) + SiAl + Ca. These results and least squares mass balance calculations suggest the reaction of clinopyroxene + orthopyroxene + spinel produces amphibole + olivine.In nature, upper mantle spinel lherzolite is commonly veined by a variety of rock types which may contain Ti-pargasite as a magmatic crystallization product. Pargasite-edenite occurs interstitially in spinel Iherzolite, often spatially related to Ti-pargasite and may be produced by hydrous fluids evolved during late stage crystallization of the veined rocks. This is supported by the close compositional correlation between the natural pargasite-edenite amphiboles and those produced in this study.The present study suggests that up to 43 wt.% amphibole may be accommodated in pyrolite in the presence of Na2O-rich H2O-CO2 fluids. This represents 0.8 wt.% H2O and 1.7 wt.% Na2O in the hydrated pyrolite composition and indicates the importance of sodium in determining the extent of metasomatism. Sodium also lowers the solidus temperature of pyrolite by more than 50°C over the H2O-saturated pyrolite system at 20 kbar.  相似文献   

9.
Seeded, solid-media piston-cylinder runs of unusually long duration up to 31 days indicate growth or persistence of synthetic gedrite of the composition □Mg6Al[AlSi7O22](OH)2(=6:1:7), prepared from the purest chemicals available, at 10 kbar water pressure and 800 °C. Conversely, breakdown was observed at 11 kbar and 850 °C to aluminous enstatite, Al2SiO5, and a melt of the composition MgO·Al2O3·8SiO2. Thus, pure gedrite free of iron, sodium, and calcium is likely to have only a small PT stability field in the MASH system, estimated as 10 ± 1 kbar, 800 ± 20 °C, even though metastable growth of gedrite can be observed over a larger PT range. A second starting material with the anhydrous composition 5MgO · 2Al2O3 · 6SiO2 also yielded gedrite of the composition 6:1:7, together with more aluminous phases such as kyanite, corundum or sapphirine, thus suggesting that the end-member gedrite defined as □Mg5Al2[Al2Si6O22](OH)2(=5:2:6) by the IMA Commission on New Minerals and Mineral Names probably does not exist. With the use of this second starting material, which contains FeNaCa impurities, growth of 6:1:7-gedrite was observed over a still wider PT-range. Seeded runs indicate that the true stability field of such slightly impure 6:1:7-gedrites may also be larger than that of the pure MASH phase and extend at least to 15 kbar, 800 °C. There is, thus, a remarkable stabilization effect on the orthoamphibole structure by impurities amounting only to a total of less than one weight percent of oxides in the starting material. The gedrites synthesized are structurally well ordered amphiboles nearly free of chain multiplicity faults, as revealed by HRTEM. The X-ray diffraction work on the gedrites synthesized yielded the smallest cell volume yet reported for this phase. The small stability field of the pure MASH gedrite is intersected by the upper pressure stability limit of hydrous cordierite for excess-H2O conditions, thus leading to complicated phase relations for both gedrite and cordierite involving the additional phases aluminous enstatite, talc, quartz, Al2SiO5, melt and perhaps boron-free kornerupine. Received: 29 July 1998 / Accepted: 7 January 1999  相似文献   

10.
The phase state of fluid in the H2O-NaF-Na2SO4 system in the presence of silicates (quartz and albite) was experimentally explored using the method of synthetic fluid inclusions in quartz at 700°C and pressures of 1 and 2 kbar. Parallel experiments were conducted under identical conditions with either two silicates (quartz and albite) or quartz only. The presence of albite affects heterogeneous fluid equilibria both at different pressures and at different solution compositions. This indicates high solubilities of silicates in a saltwater fluid containing NaF and Na2SO4. The absence of inclusions homogenizing to a gas phase in the experimental products provides compelling evidence that liquid-liquid rather than liquid-vapor equilibria are characteristic of the H2O-SiO2-NaF-Na2SO4 and H2O-SiO2-NaF-Na2SO4-NaAlSi3O2 systems in the heterogeneous region. It can be concluded that critical equilibria in saturated solutions can exist in these systems. In addition, it was shown that the phase diagrams of these systems are complicated by the formation of immiscible liquids in the presence of vapor. This allowed us to conclude that there are two critical curves describing equilibria with two different salts. Fluids containing two salts (NaF and Na2SO4) are similar to fluids containing only one of these salts: (a) two liquids are in equilibrium under the parameters of the upper heterogeneous region, (b) each of them can in turn undergo unmixing at decreasing temperature and pressure, and (c) owing to chemical interaction between silicate and fluid components, a glassy phase can be formed and trapped in inclusions.  相似文献   

11.
The effect of sulfur on the sorption of gold by carbonaceous matter (CM) was investigated under hydrothermal conditions (200–400°C and 1 kbar) using the autoclave-ampoule method. The model CM was represented by asphaltenes fractionated from the lignite of the Pavlovskoe coal field. The source of gold was the walls of the Au container, which were dissolved in water under the experimental conditions. Sulfur was added as finely ground pyrite (C-S-Fe-O-H-Au system) or elemental sulfur powder (C-S-O-H-Au system). The contents of Au were measured by atomic absorption spectrometry with electrothermal atomization in quenched aqueous solutions (WF), soluble organic fraction (SF), and insoluble residue (kerogen). The lowest Au concentration was detected in the WF, −8.96 < logmAu < −6.32. The Au concentration is higher in the SF (−5.02 < logmAu < −4.34) and increases by more then an order of magnitude in the kerogen, −3.94 < logmAu < −2.33. The IR spectra of the experimental products showed that sulfur was accumulated in the kerogen, whereas no C-S functional groups were observed in the SF. This is the reason for the negligible influence of sulfur in this system on Au concentration in the SF. The maximum Au concentration was detected in the kerogen in the presence of pyrite, which was transformed into pyrrhotite at 400°C. Thus, iron sulfides promote Au uptake by kerogen from ore-bearing hydrothermal fluids.  相似文献   

12.
13.
Diamond crystallization has been studied in the SiO2–H2O–С, Mg2SiO4–H2O–С and H2O–С subsystems at 7.5 GPa and 1,600°C. We found that dissolution of initial graphite is followed by spontaneous nucleation of diamond and growth of diamond on seed crystals. In 15-h runs, the degree of graphite to diamond transformation [α = MDm/(MDm + MGr)100, where MDm is mass of obtained diamond and MGr mass of residual graphite] reached 100% in H2O-rich fluids but was only 35–50% in water-saturated silicate melts. In 40-h runs, an abrupt decrease of α has been established at the weight ratio H2O/(H2O + SiO2) ≤ 0.16 or H2O/(H2O + Mg2SiO4) ≤ 0.15. Our results indicate that α is a function of the concentration of water, which controls both the kinetics of diamond nucleation and the intensity of carbon mass transfer in the systems. The most favorable conditions for diamond crystallization in the mantle silicate environment at reliable PT-parameters occur in the fluid phase with low concentration of silicates solute. In H2O-poor silicate melts diamond formation is questionable.  相似文献   

14.
15.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   

16.

Partitioning of more than 35 elements between coexisting phases in the apatite (Apt)–carbonate (Carb)–H2O system was studied experimentally at P = 0.5 GPa and T = 1200°C for estimation of the efficiency of fluid transport during the formation of carbonatite in platform alkaline intrusions. The interphase partition coefficients of elements (D) range from n × 10–2 to 100 and higher, which provides evidence for their effective fractionation in the system. The following elements were distinguished: (1) Apt-compatible (REE, Y, Th, Cu, and W), which are concentrated in apatite; (2) hydrophile (Na, K, Mg, Ba, S, Mn, Pb, U, W, and Re), which are preferably distributed into fluid or the carbonate melt. The high hydrophilicity of alkali metals controls the alkaline character of postmagmatic fluids and related metasomatic rocks, whereas the high D(Fl/Apt) and D(Fl/LCarb) for S, Zr, W, Re, and U show their high potential in relation to U–W–Re mineralization.

  相似文献   

17.
Crystallization experiments were performed on quartz diorite (~55 wt.% SiO2, 3.1–8.4 wt.% MgO) from the G?siniec Intrusion (Bohemian Massif, SW Poland) at 1?2 kbar, 750–850°C, various mole fractions of water and with fO2 buffered by the NNO buffer. The two natural quartz diorites (leucocratic poikilitic quartz diorite - ‘LPD’ and melanocratic quartz diorite - ‘MD’) differ in whole rock and mineral composition with MD being richer in MgO and poorer in CaO than LPD, probably due to accumulation of mafic minerals or melt removal in MD. LPD represents melt composition and is used to reconstruct crystallization conditions in the G?siniec Intrusion. The crystallization history of LPD magma, deduced from experimental and natural mineral compositions, includes a higher pressure stage probably followed by emplacement at ~2 kbar of partly crystallized magma at temperatures ~850?800°C and quick cooling. The mineral assemblage present in LPD requires water contents in the magma of at least 5 wt% and oxygen fugacity below that controlled by the NNO buffer. The compositions of mafic minerals in the MD composition were equilibrated at temperatures below 775°C and at subsolidus conditions. The equilibration was probably due to the reaction between water-rich, oxidizing residual melt and the cumulatic-restitic mineral assemblage. MD is characterized by occurrence of the euhedral cummingtonite and increasing anorthite content in the rims of plagioclase. A similar reaction was reproduced experimentally in both LPD and MD compositions indicating that cummingtonite may be a late magmatic phase in quartz dioritic systems, crystallizing very close to solidus and only from water saturated magma.  相似文献   

18.
The character of solubility of 61 metamorphic and metasomatic minerals in an aqueous fluid was analyzed as a function of temperature, pressure, and fluid acidity by means of computer simulation of mineralfluid equilibria. Depending on the behavior of minerals in solutions of varying acidity, six main types of solubility diagrams were distinguished. The solubility of the majority of minerals is controlled mainly by fluid acidity rather than by P–T conditions. The analysis of model results provided insight into the mobility of chemical elements composing the minerals. The highest mobility in solutions of any acidity was established for Si, K, and Na. Ca and Mg are mobile in acidic solutions and inert in neutral and alkaline solutions. Fe(II) and Mn(II) are mobile in acidic and alkaline solutions but inert in neutral solutions. Fe(III) is mobile only in strongly acidic solutions and practically immobile in solutions of other compositions, which suggests that ferrous iron species must prevail in solutions. Al is mobile in alkaline and ultra-acidic solutions but inert in neutral and slightly acidic solutions. Correspondingly, a change in acidity must lead to the migration of some component into the solution and precipitation of other components. These conclusions are in agreement with the sequences of element mobility deduced from the experimental investigation of metasomatism. Most metamorphic fluids must be rich in silica and alkalis, which may result in the appearance of aggressive silica-alkali fluids responsible for regional metasomatism and granitization. In general, the solubility of Fe-, Mg-, Mn-, and Ca-bearing minerals in alkaline solutions is low compared with acidic solutions. Therefore, only acidic initial solutions could produce fluids enriched in these elements at the expense of leaching from metamorphic rocks during fluid migration. Fluids enriched mainly in Fe could initially be both acidic and alkaline.  相似文献   

19.
The solubility of calcite in H2O was measured at 6–16 kbar, 500–800 °C, using a piston-cylinder apparatus. The solubility was determined by the weight loss of a single crystal and by direct analysis of the quench fluid. Calcite dissolves congruently in the pressure (P) and temperature (T) range of this study. At 10 kbar, calcite solubility increases with increasing temperature from 0.016±0.005 molal at 500 °C to 0.057±0.022 molal at 750 °C. The experiments reveal evidence for hydrous melting of calcite between 750 and 800 °C. Solubilities show only a slight increase with increasing P over the range investigated. Comparison with work at low P demonstrates that the P dependence of calcite solubility is large between 1 and 6 kbar, increasing at 500 °C from 1.8×10–5 molal at 1 kbar to 6.4×10–3 molal at 6 kbar. The experimental results are described by:
where T is in Kelvin and H2O is the density of pure water in g/cm3. The equation is applicable at 1–20 kbar and 400–800 °C, where calcite and H2O stably coexist. Extrapolated thermodynamic data for indicates that the dominant dissolved carbon species is CO2,aq at all experimental conditions. The results require that equilibrium constant for the reaction:
increases by several orders of magnitude between 1 and 6 kbar, and also rises with isobaric T increase. Published thermodynamic data for aqueous species fail to predict this behavior. The increase in calcite solubility with P and T demonstrates that there is a strong potential for calcite precipitation during cooling and decompression of water-rich metamorphic fluids sourced in the middle to lower crust.Editorial responsibility: T.L. Grove  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号