首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional ecosystem model, using a PIC (Particle-In-Cell) method, is developed to reproduce the annual cycle and seasonal variation of nutrients and phytoplankton biomass in Laizhou Bay. Eight state variables, i.e., DIN (dissolved inorganic nitrogen), phosphate, DON (dissolved organic nitrogen), DOP (dissolved organic phosphorus), COD (chemical oxygen demand), chlorophyll-a (Chl-a), detritus and the zooplankton biomass, are included in the model. The model successfully reproduces the observed temporal and spatial variations of nutrients and Chl-a biomass distributions in the bay. The nutrient concentrations are at high level in winter and at low level in summer. Double-peak structure of the phytoplankton (PPT) biomass exists in Laizhou Bay, corresponding to a spring and an autumn bloom respectively. Several numerical experiments are carried out to examine the nutrient limitation, and the importance of the discharges of the Yellow River and Xiaoqinghe River. Both DIN limitation and phosphate limitation exist in some areas of the bay, with the former being more significant than the latter. The Yellow River and Xiaoqinghe River are the main pollution sources of nutrients in Laizhou Bay. During the flood season, the algal growth is inhibited in the bay with the Yellow River discharges being excluded in the experiment, while in spring, the algal growth is enhanced with the Xiaoqinghe River excluded.  相似文献   

2.
We investigated the spatio-temporal and environmental factors that affect the distribution and abundance of wintering anchovy and quantifi es the infl uences of these factors. Generalized additive models(GAMs) were developed to examine the variation in species distribution and abundance with a set of spatiotemporal and oceanographic factors, using data collected by bottom trawl surveys and remote sensing in the central and southern Yellow Sea during 2000–2011. The fi nal model accounted for 28.21% and 41.03% of the variance in anchovy distribution and abundance, respectively. The results of a two-step GAM showed that hour, longitude, latitude, temperature gradient(TGR), and chlorophyll a(Chl- a) concentration best explained the anchovy distribution(presence/absence) and that a model including year, longitude, latitude, depth, sea surface temperature(SST), and TGR best described anchovy abundance(given presence). Longitude and latitude were the most important factors affecting both distribution and abundance, but the area of high abundance tended to be east and south of the area where anchovy were most likely to be present. Hour had a signifi cant effect on distribution, but year was more important for anchovy abundance, indicating that the anchovy catch ratio varied across the day but abundance had an apparent interannual variation. With respect to environmental factors, TGR and Chl- a concentration had effects on distribution, while depth, SST, and TGR affected abundance. Changes in SST between two successive years or between any year and the 2000–2011 mean were not associated with changes in anchovy distribution or abundance. This fi nding indicated that short- and long-term water temperature changes during 2000–2011 were not of suffi cient magnitude to give rise to variation in wintering anchovy distribution or abundance in the study area. The results of this study have important implications for fi sheries management.  相似文献   

3.
Sharpies‘ 1-D physical rrozlel maploying tide-wind driven turbulence closure and surface heating-cooling physics, was coupled with an eculogical rnodet with 9-biochemical components: phytoplankton, zooplankton, shellfish, autotmphic and heterotrophic bacterioplankton, dissolved organic carbon (DOC), suspended detritus and sinking particles to simulate the armual evolution of ecosystem in thecentral part of Jiaozhou Bay. The coupled modeling results showed that the phytoplankton shading effectcould reduce seawater temperamre by 2℃, so that photosynthesis efficiency should be less than 8% ; that the loss of phytoplankton by zooplankton grazing in winter tended to be compensated by phytoplankton advection and diffusion from the otrtside of the Bay; that the incidem irradiance intensity could be the mostimportant factor for phytoplankton grcr, wth rate; and that it was the bacterial secondary prnduction that maintained the maximum zooplankton biomass in winter usually observed in the 1990s, indicating that themicrobial food loop was extremely important for ecosystem study of Jiaozhou Bay.  相似文献   

4.
Anchovy is a key species in the Yellow Sea ecosystem. An accurate estimate of anchovy abundance is vital for the management of the anchovy stock and measurement of the ecosystem response to changes in anchovy abundance. However, the acoustic fish abundance estimate may be biased by 30%?C40% if the fat-content induced target strength variation is not taken into account. We measured the monthly variation in the fat content of anchovy (Engraulis japonicus) in the Yellow Sea, and evaluated the potential effect of variation in fat content on the acoustic assessment of anchovy abundance. The fat content of anchovy varied seasonally, with two maxima and two minima in a year. The highest fat content (14.75%) was measured in the pre-spawning period in May, and the lowest fat content (2.48%) was measured during the post-spawning period in October. Fat content appeared to correlate with water content, but not body size. Assuming that the target strength is decreased by 0.2dB for every 1% increase in fat content, the seasonal difference in the target strength of anchovy may be as high as 2.45 dB. Given this, the acoustic abundance estimate may be biased by between 43% and 76%. Our results highlight the need for more information on the changes in fat content of fishes whose abundance is estimated by acoustic surveys.  相似文献   

5.
Trophic interaction among various biomass groups in a swimming crab Portunus trituberculatus polyculture pond was investigated using carbon and nitrogen stable isotope analysis. The polycultured animal species also included white shrimp Litopenaeus vannamei, short-necked clam Ruditapes philippinarum, and redlip mullet Liza haematochila. The mean δ13C value for all the biomass groups in polyculture ecosystem ranged from ?25.61‰ to ?16.60‰, and the mean δ15N value ranged from 6.80‰ to 13.09‰. Significant difference in the δ13C value was found between particulate organic matter (POM) and sediment organic matter (SOM) (P < 0.05), indicating that these two organic matter pools have different material sources. Assuming that a 13C-enrichment factor of 1.00‰ and a 15N-enrichment factor of 2.70‰ existed between consumer and prey, diets of the four cultured animals were estimated using a stable isotope mixing model. The estimated model results indicated that P. trituberculatus mainly feed on Aloidis laevis; L. vannamei mainly feed on shrimp feed; while A. laevis, R. philippinarum and L. haematochelia mainly feed on POM. Shrimp feed was also an important food source of R. philippinarum and L. haematochelia. The diets of P. trituberculatus, L. vannamei, R. philippinarum, and L. haematochila showed complementary effects in this polyculture ecosystem. Our finding indicated that the polyculture of these four organisms with suitable farming density could make an effective use of most of the food sources, which can make a highly efficient polyculture ecosystem.  相似文献   

6.
The response of zooplankton to the ecological environment in Daya Bay is unclear under the influence of both climate changes and anthropogenic activities on a seasonal to inter-annual scale. Based on monthly surveys and historical data, we found the zooplankton community had changed temporally and spatially. A total of 134 species was recorded during the study, and copepods dominated numerically in terms of diversity and abundance. Both copepods and cladocerans were the main contributors to zooplankton abundance. The community structure of zooplankton was temporally classified into the warm and cold groups, and spatially into the three groups located in the marine cage-culture area(MCCA), the outflow of nuclear power plants(ONPP) and unpolluted waters(UPW). The zooplankton was characterized by low biomass(dry weight), high diversity and abundance in the warm period in contrast to that in the cold period. Compared with the other two groups, the MCCA group of zooplankton showed high abundance, low diversity and biomass. Variations in dominant species were closely related to temperature, salinity and chlorophyll a concentration.Species diversity and dry weight decreased in comparison with 30 years ago, while zooplankton abundance increased. The seasonal variation in zooplankton was affected mainly by temperature that was controlled by monsoon, while the spatial difference in the community structure was probably due to eutrophication in the MCCA and thermal water discharge from ONPP. The zooplankton community is undergoing great changes with the tendency of miniaturization and gelatinization in recent 30 years in Daya Bay.  相似文献   

7.
Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.  相似文献   

8.
To study the relationship between zooplankton community structure and environmental factors and water quality in the Harbin Section of the Songhua River, investigations were carried out in June, August, and October 2011. Canonical correspondence analysis (CCA) and saprobic indices were used to process and analyze the data. Seasonal variability was identified as a significant source of variation, which explains the fluctuation in zooplankton density. In autumn, the dry season, water residence time increased and zooplankton biomass and abundance accumulated in the slow flowing waters. Zooplankton abundance increased when food conditions improved. Therefore, the total zooplankton abundance in autumn is much higher than that in spring and summer. According to the saprobic indices, all the sample sites had mesosaprobic water and water quality was worse in autumn. CCA revealed that temperature accounted for most of the spatial variation in the zooplankton community. Moreover, pH, dissolved oxygen saturation, and turbidity were important factors affecting zooplankton community distribution.  相似文献   

9.
Based on stable isotope analysis, we characterized the dietary regime of the Manila clam Ruditapes philippinarum inhabiting intertidal areas along the Liaodong Peninsula, Northern China. Samples, including particulate organic matter (POM; n =30), benthic microalgae (BMI; n =30) and R. philippinarum (n =60), were collected from six sampling sites displaying the same ecological conditions. Of the two primary food sources, POM was more depleted in δ 13C (?20.61‰ to ?22.89‰) than BMI was (?13.90‰ to ?16.66‰). With respect to 15N, BMI was more enriched (2.90‰ to 4.07‰) than POM was (4.13‰ to 5.12‰). The δ 13C values of R. philippinarum ranged from ?18.78‰ to ?19.35‰ and the δ 15N values from 7.96‰ to 8.63‰, which were intermediate between the POM and BMI values. In a two-source isotope mixing model, we estimated the relative contributions of POM and BMI to the diet of R. philippinarum to be 74.2% and 25.8%, respectively. We conclude that R. philippinarum feeds mainly on POM, and BMI is also an important supplemental food source in intertidal areas.  相似文献   

10.
Two Ecopath mass-balance models were implemented for evaluating the structure and function of Haizhou Bay Ecological Restoration Area ecosystem using 14 ecological indicators in two distinctive years(2003 and 2013). The results showed that the size of HZERA ecosystem became larger as total biomass was increased in last decade, especially in primary producer and zooplankton groups. Total system throughput increased from 7496.00 t km~(-2) yr~(-1) to 9547.54 t km~(-2) yr~(-1). The P/R(production/respiration) ratio decreased over the decade. Finn's cycling index and Finn's mean path length increased over the decade. No keystone species(KS) occurred during ten years; however, evidences of top-down control in 2003 and 2013 models were demonstrated by high KS value belonging to Lophius litulon group in food web. Drawing upon Odum's theory of ecosystem maturity, the structured, web-like ecosystem of 2013 model had developed into a highly mature system compared with that of 2003 model.  相似文献   

11.
A modified lower trophic ecosystem model (NEMURO) is coupled with a three-dimensional hydrodynamic model for an application in the central Yellow Sea. The model is used to simulate the horizontal distributions and annual cycles of chlorophyll-a and nutrients with results consistent with historical observations. Generally, during the winter background and spring bloom periods, the exchange with neighboring waters constitutes the primary sources of nutrients. Howerver, during the winter background period, the input of silicate from the layer deeper than 50 m is the most important source that contributes up to 60% to the total sources. During the spring bloom period, the transport across the thermocline makes significant contribution to the input of phosphate and silicate. During the post spring bloom period, the relative contribution of relevant processes varies for different nutrients. For ammonium, atmospheric deposition, excretion of zooplankton and decomposition of particulate and dissolved nitrogen make similar contributions. For phosphate and silicate, the dominant input is the transport across the thermocline, accounting for 62% and 68% of the total sources, respectively. The N/P ratio averaged annually and over the whole southern Yellow Sea is up to 51.8, indicating the potential of P limitation in this region. The important influence of large scale sea water circulation is revealed by both the estimated fluxes and the corresponding N/P ratio of nutrients across a section linking the northeastern bank of the Changjiang River and Cheju Island. During the winter background period, the input of nitrate, ammonium, phosphate and silicate by the Yellow Sea Warm Current is estimated to be 4.6×1010, 2.3×1010, 2.0×109 and 1.2×1010 mol, respectively.  相似文献   

12.
Analysis of stomach contents of samples of clupeid fishes (Japanese anchovy, half-fin anchovy, zunas' scaled sardine, rednosed glassnose and tapertail anchovy) collected from the catches of a 1982–1984 fishery resource survey showed they are zooplanktonivorous. Similar food groups, such as copepoda. Chaetognatha, Amphipoda and Mysidacea were found in the stomach. Dietary similarity coefficients were studied to evaluate the degree of similarity in the dietary species-pairs. Seasonal variation is discussed. Contribution No.2050 from the Institute of Oceanology, Academia Sinica.  相似文献   

13.
Analysis of stomach contents of samples of clupeid fiishes (Japanese anchovy, half-fin anchovy, zunas' scaled sardine, rednosed glassnose and tapertail anchovy) collected from the catches of a 1982-1984 fishery resource survey showed they are zooplanktonivorous. Similar food groups, such as copepoda, Chaetognatha, Amphipoda and Mysidacea were found in the stomach. Dietary similarity coefficients were studied to evaluate the degree of similarity in the dietary species-pairs.Sea-sonal variation is discussed.  相似文献   

14.
The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in the saline Bange Lake, northern Tibet, China. Sampling was carried out between one to three times per month from May 2001 to July 2002. Salinity ranged from 14 to 146. The air and water temperature exhibited a clear seasonal pattern, and mean annual temperatures were approximately 4.8°C and 7.3°C, respectively. The lowest water temperature occurred in winter from December to March at-2°C and the highest in June and July at 17.7°C. Forty-one phytoplankton taxa, 21 zooplankton, and 5 benthic or facultative zooplankton were identifi ed. The predominant phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Dunaliella salina, and Spirulina major. The predominant zooplankton species included H olophrya actra, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, and A rctodiaptomus salinus. The mean annual total phytoplankton density and biomass for the entire lake were 4.52×10~7 cells/L and 1.60 mg/L, respectively. The annual mean zooplankton abundance was 52, 162, 322, and 57, 144 ind./L, in the three sublakes. The annual mean total zooplankton biomass in Lakes 1–3 was 1.23, 9.98, and 2.13 mg/L, respectively. The annual mean tychoplankton abundances in Bg1, 2, and 3 were 47, 67, and 654 ind./L. The annual mean tychoplankton biomass was 2.36, 0.16, and 2.03 mg/L, respectively. The zooplankton biomass(including tychoplankton) in the lake was 9.11 mg/L. The total number of plankton species in the salt lake was signifi cantly negatively correlated with salinity.  相似文献   

15.
Estuarine plankton communities can serve as indicators of ecosystem modification in response to anthropogenic influences. The main objectives of this study were to describe the spatial distribution and diurnal variability in zooplankton abundance and biomass over almost entire salinity gradient of the Changjiang (Yangtze) River estuary and to provide a background reference for future studies. To accomplish this, data were collected from 29 stations in the estuary from May 19 to 26, 2003, including two anchor stations. The spatial and diurnal variations in zooplankton characteristics, i.e. abundance, biomass, and gross taxonomic composition, were examined. Generally, both the abundance and biomass gradually increased seaward and presented distinct spatial variations. In addition, the spatial data revealed a significant correlation between abundance and biomass; however, there was no significant correlation between abundance and biomass for the diurnal data. Although the zooplankton composition indicated distinct spatial differences in terms of dominant groups, copepods accounted for >50% of the total zooplankton abundance in most regions and times. Three zooplankton assemblages were recognized through hierarchical cluster analysis. These assemblages existed along the salinity gradient from fresh water to seawater, and their positions coincided with those of the three principal water masses in the estuary. The assemblages were classified as: (1) true estuarine, (2) estuarine and marine, and (3) euryhaline marine, which were characterized by the copepods Sinocalanus dorrii, Labidocera euchaeta, and Calanus sinicus, respectively. Both spatial and diurnal data indicated that there was no significant correlation between zooplankton abundance/biomass and depth-integrated phytoplankton abundance.  相似文献   

16.
Stable isotope values, δ13C and δ15N, were determined for four primary producers and 19 dominant consumers in a small artificial lagoon located in Hangzhou Bay. Based on these results the major pathways for energy flow and trophic structure of the artificial lagoon ecosystem were characterized. The mean δ13C values for the 19 consumers ranged from −22.99‰ to −14.24‰. Apart from so-iny mullet Liza haematocheila, the other 18 consumers had intermediate δ13C values between those of epibenthic microalgae and particulate organic matter (POM). The results of a multiple source linear mixing model (IsoSource model) indicated that 50% or more of the organic carbon in the tissues of most consumers was derived from epibenthic microalgae. This indicated that these primary producers were the main food source fueling the lagoon food web. The mean δ15N values for the 19 consumers varied between 4.93‰ and 12.97‰ and indicated four trophic levels in the lagoon. Four macroinvertebrates and zooplankton represented the primary consumers, whilst the other 14 consumers occupied the secondary and tertiary consumer levels. The 19 consumers were divided into three trophic guilds (detritivores/suspension feeders, omnivores and carnivores).  相似文献   

17.
Keibul Lamjao National Park(KLNP), a floating park in Loktak Lake, Manipur(India) was studied from Winter(WIN) to Post Monsoon(POM) for its zooplankton composition and some selected water parameters. The resultant data were subjected to multivariate techniques ? Principal Component Analysis(PCA) and Canonical Correspondence Analysis(CCA). Analyses of water parameters with PCA revealed that the first PC axis(PC1) accounts for maximum variance in the seasonal data, explaining a variability of 91%. The PCA revealed that the seasonal variability in water parameters was due to the wet and dry cycle of seasons and the stations were distinguished on the basis of transparency and turbidity. Zooplankton abundance was dominated by copepods followed by cladocerans. Temporally, abundance of copepods reached a maximum during Post-monsoon(POM)(3 880 ind./L). Spatially, S6 was found to be most abundant of the other stations in zooplankton. Copepodites and nauplii larvae were the major components of zooplankton. The Rotifera were the least abundant among the three zooplankton groups. Brachionus formed the major component of Rotifera zooplankton at all the stations during the study period. In the Cladocera, Macrothrix was present during all the four seasons, while Pleuroxus, Oxyurella, Kurzia and, Diaphanosoma were rare. The CCA shows that maximal temporal variability in zooplankton abundance was explained by temperature and rainfall. ANOVA revealed no significant difference in mean zooplankton abundance among the seasons, but there was a statistically significant difference among the sites.  相似文献   

18.
Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.  相似文献   

19.
Estuarial saline wetlands have been recognized as a vital role in CO2 cycling. However, insufficient attention has been paid to estimating CO2 fluxes from estuarial saline wetlands. In this study, the static chamber-gas chromatography (GC) method was used to quantify CO2 budget of an estuarial saline reed (Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province, China during the reed growing season (May to October) in 2014. The CO2 budget study involved net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP). Temporal variation in CO2 budget and the impact of air/soil temperature, illumination intensity and aboveground biomass exerted on CO2 budget were analyzed. Results indicated that the wetland was acting as a net sink of 1129.16 g/m2during the entire growing season. Moreover, the values of Reco and GPP were 1744.89 g/m2 and 2874.05 g/m2, respectively; the ratio of Reco and GPP was 0.61. Diurnal and monthly patterns of CO2 budget varied significantly during the study period. Reco showed exponential relationships with air temperature and soil temperature at 5 cm, 10 cm, 20 cm depths, and soil temperature at 5 cm depth was the most crucial influence factor among them. Meanwhile, temperature sensitivity (Q10) of Reco was negatively correlated with soil temperature. Light and temperature exerted strong controls over NEE and GPP. Aboveground biomass over the whole growing season showed non-linear relationships with CO2 budget, while those during the early and peak growing season showed significant linear relationships with CO2 budget. This research provides valuable reference for CO2 exchange in estuarial saline wetland ecosystem.  相似文献   

20.
A model of nitrogen and phosphorus dynamics in mesocosm experiments was established on the basis of a summary and synthesis of the existing models. The established model comprised seven state variables(DIN,PO4-P,DON,DOP,phytoplankton,zooplankton and detritus) and five modules - phytoplankton,zooplankton,dissolved inorganic nutrients,dissolved organic nutrients and detritus. Comparison with the in situ experimental data in Laizhou Bay at the end of August 2002 showed that this model could properly simulate t...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号