首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
2.
Processing techniques are used to approximate the exact flow of near-integrable Hamiltonian systems depending on a small perturbation parameter. We study the reduction of the number of conditions for the kernel for this type of Hamiltonians and we build third, fourth and fifth order methods which are shown to be more efficient than previous algorithms for the same class of problems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We build high order numerical methods for solving differential equations by applying extrapolation techniques to a Symplectic Integrator of order 2n. We show that, in general, the qualitative properties are preserved at least up to order 4n+1. This new procedure produces much more efficient methods than those obtained using the Yoshida composition technique. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We discuss the efficiency of the so-called mixed-variable symplectic integrators for N-body problems. By performing numerical experiments, we first show that the evolution of the mean error in action-like variables is strongly dependent on the initial configuration of the system. Then we study the effect of changing the stepsize when dealing with problems including close encounters between a particle and a planet. Considering a previous study of the slow encounter between comet P/Oterma and Jupiter, we show that the overall orbital patterns can be reproduced, but this depends on the chosen value of the maximum integration stepsize. Moreover the Jacobi constant in a restricted three-body problem is not conserved anymore when the stepsize is changed frequently: over a 105 year time span, to keep a relative error in this integral of motion of the same order as that given by a Bulirsch-Stoer integrator requires a very small integration stepsize and much more computing time. However, an integration of a sample including 104 particles close to Neptune shows that the distributions of the variation of the elements over one orbital period of the particles obtained by the Bulirsch-Stoer integrator and the symplectic integrator up to a certain integration stepsize are rather similar. Therefore, mixed-variable symplectic integrators are efficient either for N-body problems which do not include close encounters or for statistical investigations on a big sample of particles.  相似文献   

5.
We obtain thex - p xPoincare phase plane for a two dimensional, resonant, galactic type Hamiltonian using conventional numerical integration, a second order symplectic integrator and a map based on the averaged Hamiltonian. It is found that all three methods give good results, for small values of the perturbation parameter, while the symplectic integrator does a better job than the mapping, for large perturbations. The dynamical spectra are used to distinguish between regular and chaotic motion.  相似文献   

6.
A recurrent method of solving the formal integrals of symplectic integrators is given. The special examples show that there are no long-term variations in all integrals of the Hamiltonian system in addition to the energy one when symplectic integrators are used in the numerical studies of the system. As an application of the formal integrals, the relation between them and the linear stability of symplectic integrators is discussed.  相似文献   

7.
We consider Sundman and Poincaré transformations for the long-time numerical integration of Hamiltonian systems whose evolution occurs at different time scales. The transformed systems are numerically integrated using explicit symplectic methods. The schemes we consider are explicit symplectic methods with adaptive time steps and they generalise other methods from the literature, while exhibiting a high performance. The Sundman transformation can also be used on non-Hamiltonian systems while the Poincaré transformation can be used, in some cases, with more efficient symplectic integrators. The performance of both transformations with different symplectic methods is analysed on several numerical examples.  相似文献   

8.
New techniques to study Hamiltonian systems with Hamiltonian forcing are proposed. They are based on singularly weighted symplectic forms and transformations which preserve these forms. Applications pertaining to asteroid motion are outlined. These involve the presence of both Jupiter and Saturn.  相似文献   

9.
Various sets of periodic solutions of a 3-D Hamiltonian system crossing perpendicularly thez=0 plane are presented. These sets form a main multi-spiral pattern and two secondary ones which have three focal points. The main pattern is inside a stochastic region that surrounds a simple complex unstable periodic orbit, while the two secondary patterns are parts of a stochastic sea. Through these regions the stochastic region communicates with the stochastic sea.  相似文献   

10.
We propose a new method based on Lie transformations for simplifying perturbed Hamiltonians in one degree of freedom. The method is most useful when the unperturbed part has solutions in non-elementary functions. A non-canonical Lie transformation is used to eliminate terms from the perturbation that are not of the same form as those in the main part. The system is thus transformed into a modified version of the principal part. In conjunction with a time transformation, the procedure synchronizes the motions of the perturbed system onto those of the unperturbed part.A specific algorithm is given for systems whose principal part consists of a kinetic energy plus an arbitrary potential which is polynomial in the coordinate; the perturbation applied to the principal part is a polynomial in the coordinate and possibly the momentum.We demonstrate the strategy by applying it in detail to a perturbed Duffing system. Our procedure allow us to avoid treating the system as a perturbed harmonic oscillator. In contrast to a canonical simplification, our method involves only polynomial manipulations in two variables. Only after the change of time do we start manipulating elliptic functions in an exhaustive discussion of the flows.  相似文献   

11.
In this paper, following the idea of constructing the mixed symplectic integrator (MSI) for a separable Hamiltonian system, we give a low order mixed symplectic integrator for an inseparable, but nearly integrable, Hamiltonian system, Although the difference schemes of the integrators are implicit, they not only have a small truncation error but, due to near integrability, also a faster convergence rate of iterative solution than ordinary implicit integrators, Moreover, these second order integrators are time-reversible.  相似文献   

12.
Equations are presented for the computation of tangent maps for use in nearly Keplerian motion, approximated by use of a symplectic leapfrog map. The resulting algorithms constitute more accurate and efficient methods to obtain the Liapunov exponents and the state transition matrix, and can be used to study chaos in planetary motions, as well as in orbit determination procedures from observations. Applications include planetary systems, satellite motions and hierarchical, nearly Keplerian systems in general. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The relegation algorithm extends the method of normalization by Lie transformations. Given a Hamiltonian that is a power series = 0+ 1+ ... of a small parameter , normalization constructs a map which converts the principal part 0into an integral of the transformed system — relegation does the same for an arbitrary function [G]. If the Lie derivative induced by [G] is semi-simple, a double recursion produces the generator of the relegating transformation. The relegation algorithm is illustrated with an elementary example borrowed from galactic dynamics; the exercise serves as a standard against which to test software implementations. Relegation is also applied to the more substantial example of a Keplerian system perturbed by radiation pressure emanating from a rotating source.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in   P ∼  10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is  11.91 ± 0.05  d, and the false alarm probability for this period is extremely low  (∼10−13)  .  相似文献   

15.
We present a map for the study of resonant motion in a potential made up of two harmonic oscillators with quartic perturbing terms. This potential can be considered to describe motion in the central parts of non-rotating elliptical galaxies. The map is based on the averaged Hamiltonian. Adding on a semi-empirical basis suitable terms in the unperturbed averaged Hamiltonian, corresponding to the 1:1 resonant case, we are able to construct a map describing motion in several resonant cases. The map is used in order to find thex − p x Poincare phase plane for each resonance. Comparing the results of the map, with those obtained by numerical integration of the equation of motion, we observe, that the map describes satisfactorily the broad features of orbits in all studied cases for regular motion. There are cases where the map describes satisfactorily the properties of the chaotic orbits as well.  相似文献   

16.
The D'Alembert model for the spin/orbit problem in celestial mechanics is considered. Using a Hamiltonian formalism, it is shown that in a small neighborhood of a p:q spin/orbit resonance with (p,q) different from (1,1) and (2,1) the 'effective' D'Alembert Hamiltonian is a completely integrable system with phase space foliated by maximal invariant curves; instead, in a small neighborhood of a p:q spin/orbit resonance with (p,q) equal to (1,1) or (2,1) the 'effective' D'Alembert Hamiltonian has a phase portrait similar to that of the standard pendulum (elliptic and hyperbolic equilibria, separatrices, invariant curves of different homotopy). A fast averaging with respect to the 'mean anomaly' is also performed (by means of Nekhoroshev techniques) showing that, up to exponentially small terms, the resonant D'Alembert Hamiltonian is described by a two-degrees-of-freedom, properly degenerate Hamiltonian having the lowest order terms corresponding to the 'effective' Hamiltonian mentioned above.  相似文献   

17.
18.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号