首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this paper is to discuss the effectiveness of visualizing online 3D terrain draped with different satellite imageries. The topographic data of the study area were obtained from the contour maps of Universiti Putra Malaysia, Selangor, Malaysia. The high resolution satellite imageries used in this project involving QUICKBIRD (0.6 m resolution), IKONOS (1 m resolution), and SPOT5 (5 m resolution). R2V software was used for editing the contour data, whereas Arc GIS was used for overlaying the imageries over the 3D terrain data. Then the data were exported into Virtual Reality Markup Language to compare the effectiveness of different satellite imageries based on the data file size, imageries size, number of images tile, loading time during office hours (from 8 a.m. to 5 p.m.) and out of office hours (after 5 p.m.), frame rate per second, and visualization quality. The results revealed that IKONOS satellite imageries are better for an effective online 3D terrain visualization utilizing GIS data even though it has lower resolution compared to QUICKBIRD.  相似文献   

2.
For regional and national study purposes, there is a high need for updating the terrain corrections (TC) in the French gravity database. We have recomputed the TC for all the French gravity stations from 50 m out to a distance of 167 km. We compute the TC with a flat-top-prism algorithm and three DEM with grid spacing of 50, 250 and 1000 m, used in the zones 53 m/3 km, 3 km/10 km et 10 km/167 km, respectively. Analysing the DEM/station Δz and comparing our results to the ones previously obtained in the Alps area, we estimate the accuracy of our TC to be better than 1 mGal. To cite this article: G. Martelet et al., C. R. Geoscience 334 (2002) 449–454.  相似文献   

3.
空间分辨率与取样方式对DEM流域特征提取的影响   总被引:12,自引:0,他引:12  
郝振纯  池宸星 《冰川冻土》2004,26(5):610-616
随着数字水文的兴起和分布式水文模型研究的发展, 利用DEM提取水文特征, 进而进行水文模拟的方法越来越广泛地为水文学者所采用. 空间分辨率的改变与DEM重新取样方式对水文模拟都会产生重要影响. 采取不同取样方法获得多种尺度的DEM, 对不同分辨率下的流域特征值进行了统计分析与比较, 引入熵的概念度量不同分辨率的DEM包含的信息量, 以及不同取样方式对信息量的影响. 并计算了以50 m DEM所包含的信息量为基准, 在不同的信息损失下所要求的最低分辨率.  相似文献   

4.
In Sahel-Doukkala, which is characterized by lands of a relatively low relief, global DEMs and DEMs generated from digitizing topographic maps, have been the primary source of several multidisciplinary researches. Although these products present a great value of the conducted research, the level of the given accuracy is not sufficient enough for detailed geospatial analysis. These requirements led us to generate a high-resolution DEM as an alternative of available global DEMs or/and DEMs generated from digitizing topographic maps. In this study, we present a workflow to extract high-resolution DEM at 5 m resolution and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala, through photogrammetric techniques, using a variation of GCPs obtained from topographic maps at scale 1:25,000. The accuracy of the generated products is reported according to NSSDA standards. Using ten GCPs, a PRISM-DEM with 3.88 m vertical accuracy and 11.60 m horizontal accuracy, both at 95% confidence level is obtained. This DEM will serve as base dataset for further detailed geospatial analysis and mapping applications in order to identify the relationship between surface parameters and groundwater, and also to assess and understand all factors influencing the development of karst landscapes and consequently subsurface stability in the investigated area.  相似文献   

5.
This paper investigates surface elevation changes that occurred during 1996–2004 in the Jharia coalfield through the digital elevation model (DEM) generated using synthetic aperture radar interferometry (InSAR) using ERS-1/2 (European Remote Sensing Satellite) tandem and RADARSAT-1 data. The comparison of elevation values derived from the InSAR DEM and topographic height data shows a bias of 23.08 m with root-mean-square error of ±2.31 m (5.8 %). The accuracy of the DEM was investigated by comparing the elevation profiles with the digitized elevation contour data at four different locations. The profile comparison shows a mean bias of 22.68 m. Local topography shows changes in elevation up to ±40.00 m due to mining activities on the 8-year time period. The results of InSAR-derived heights and topographic heights were comparable and well-matched except at a few locations where topographic data were unavailable. DEM generated using InSAR due to its high spatial details is ideal for the detection and estimation of surface elevation changes in mining areas.  相似文献   

6.
The present study investigates a potential application of different resolution topographic data obtained from airborne LiDAR and an integrated ensemble weight-of-evidence and analytic hierarchy process (WoE–AHP) model to spatially predict slope failures. Previously failed slopes of the Pellizzano (Italy) were remotely mapped and divided into two subsets for training and testing purposes. 1, 2, 5, 10, 15, and 20 m topographic data were processed to extract nine terrain attributes identified as conditioning factors for landslides: slope degree, aspect, altitude, plan curvature, profile curvature, stream power index, topographic wetness index, sediment transport index, and topographic roughness index. Landslide (slope failure) susceptibility maps were produced using a single WoE (Model 1), an ensemble WoE–AHP model that used all conditioning factors (Model 2), and an ensemble WoE–AHP model that only used highly nominated conditioning factors (Model 3). The validation results proved the efficiency of high-resolution (≤ 5 m) topographic data and the ensemble model, particularly when all factors were used in the modeling process (Model 2). The average success rates and prediction rates for Model 2 that used ≤ 5 m resolution datasets were 84.26 and 82.78%, respectively. The finding presented in this paper can aid in planning more efficient LiDAR surveys and the handling of large datasets, and in gaining a better understanding of the nature of the predictive models.  相似文献   

7.
张传才  秦奋  张喜旺  王航  肖培青 《水文》2018,38(2):15-24
DEM分辨率对分布式水沙过程模拟具有重要影响,然而,产生影响的内部机制尚不明确。改进水沙物理模型CASC2D-SED的结构,将坡度由DEM在模型内部直接提取改为由模块单独计算,并将坡度设计为模型的独立输入参数,通过单独改变坡度参数来研究坡度对水沙模拟DEM尺度效应的影响。基于改进的CASC2D-SED模型,以内蒙古准格尔旗沙圪堵镇附近的一个小流域为研究对象,以无人机航测的1m分辨率DEM数据、野外实测与室内实验获得的土壤特性数据、土地利用数据和降雨数据为基础,采用3种水沙模拟方案进行多象元尺度的水沙过程模拟,进而探索水沙过程模拟的DEM尺度效应及发生机制。研究表明:⑴在4~20m GRID分辨率区间模拟的径流量位于323.18m3和411.43m3之间,波动不大;⑵2~20m GRID分辨率区间内,模拟的侵蚀流量在3.43m3和65.61m3间变化,波动很大;(3)坡度和径流路径是水文过程模拟DEM尺度效应的两个对立影响因子,是水文过程模拟DEM尺度效应不明显的主要原因;⑷DEM尺度效应对侵蚀输沙具有重要影响,地形坡度是侵蚀输沙DEM尺度效应的主要控制因子;⑸地形坡度随DEM分辨率降低而发生的空间上的波动变化是侵蚀输沙量随DEM分辨率降低而波动变化的原因。  相似文献   

8.
唐新建  任伟中  王川婴  朱同林 《岩土力学》2006,27(12):2294-2298
以岩土工程边坡数值模拟仿真可视化为研究对象,分析、研究了数字高程模型(DEM)和样条函数。将非均匀B样条曲面拟合和准均匀B样条小波多尺度分解结合起来,实现多尺度DEM地形建模方法,设计了相应的算法。实验结果表明,其建模造型效果逼真,多尺度分辨率明显,是一种高效实用的建模方法。  相似文献   

9.
In this work, ground penetrating radar (GPR) data, global position system (GPS) data, Landsat remote sensing images and digital elevation model (DEM) SRTM were used to study the Muz Taw glacier in the Sawir Mountains. By a variety of interpolation methods, spatial pattern of thickness of the Muz Taw glacier was obtained. The results show that there are obvious differences between the available GPR transverse profiles. The lower transverse profile has typical “U”-type topographic feature, the maximum glacier thickness is up to 116.4 m; glacier thickness distribution in the higher profile is relatively flat, with an average about 70–90 m. The longitudinal profile forms a ladder-like distribution, which in the middle of the ice bedrock topography has obvious depression. The average longitudinal ice thickness is about 80.89 m; the maximum ice thickness is up to 122.61 m. In addition, the preliminary estimation of the average thickness and total terminus ice volume were approximately 60.5 m and 0.195 km3, respectively.  相似文献   

10.
Digital Elevation Model (DEM) is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE) model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT) and their increasing grid space (pixel size) from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet). Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level), before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.  相似文献   

11.
数字高程模型分辨率对流域地形特征参数的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
地形特征(如高程和坡度)和水文特征(如河流长度和河流坡度)是分布式流域水文水质模型的基础输入参数,用于量化描述模型模拟流域的自然特征。这些特征参数的准确性直接影响水文水质过程模拟的准确性。应用数字高程模型(Digital Elevation Model,DEM)在4个不同地形的子流域研究了10种不同分辨率DEM对平均高程、流域面积、坡度、河流坡度、最长河长等参数的影响。结果表明,随着DEM分辨率降低,流域地形变缓,流域平均坡度逐渐减小;随着DEM网格分辨率的变化,子流域划分范围和河道位置也都可能发生变化,且该变化在地形起伏较小的丘陵平原地区较明显,子流域集水面积和河长进一步随之改变;河流坡度随DEM分辨率降低则呈无规则变化。从地形和水文参数两方面揭示了DEM 分辨率在分布式流域模型中的不确定性影响。  相似文献   

12.
The mobility of gravity-driven granular flows such as debris flows or pyroclastic density currents are extremely sensitive to topographic changes, such as break in slopes, obstacles, or ravine deviations. In hazard assessment, computer codes can reproduce past events and evaluate hazard zonation based on inundation limits of simulated flows over a natural terrain. Digital Elevation Model (DEM) is a common input for the simulation algorithm and its accuracy to reproduce past flows is crucial. In this work, we use TITAN2D code to reproduce past block-and-ash flows at Colima volcano (Mexico) over DEMs with different cell size (5, 10, 30, 50, and 90 m) in order to illustrate the influences of the resolution on the numeric simulations. Our results show that topographic resolution significantly affects the flow path and runout. Also, we found that simulations of past flows with the same input parameters (such as the basal friction angle) over topography with different resolutions resulted in different flow paths, areas, and thickness of the simulated flows. In particular, the simulations performed with the 5- and 10-m DEMs produced similar results. Also, we obtained consistent simulation results for the 30- and 50-m DEMs. However, for the coarser 90-m DEM results are largely different and inaccurate. We recommend generating a benchmark table in order to acquire characteristic values for the basal friction angle of studied events. In case of rugged topographies, a DEM with high resolution should be used for more confident results.  相似文献   

13.
Digital elevation models (DEMs) used in geospatial analysis like the simulation of geophysical flows, such as floods, landslides, and block and ash flows, differ in resolution, acquisition time and generation methodology, which results in varied representation of topographic features. This study investigates the effects of DEMs on the output of a granular flow model, TITAN2D by comparing the output using different DEMs to that obtained with a “true” representation of the terrain, which is considered to be that obtained by using TOPSAR 5 m data. Seven DEMs at four resolutions from four sources were used for Mammoth Mountain, California, a cumulodome volcano. TITAN2D was run for seven different locations of an eruption of a potential dome and two different collapse volumes. The resulting outputs were subsequently compared with TOPSAR 5 m output, and qualitative and statistical inferences were drawn. DEMs with different resolutions and sources generated different outputs that led to different flow maps. For moderate and smaller scale flows ( $\mathcal{O}(10^4)$ m3 $\mathcal{O}(10^5) \,\text{m}^3$ ), different representations can affect the computation of accurate footprint of the flow and fine DEM resolution is critical for correct characterization of these flows.  相似文献   

14.
An extremely large rock avalanche occurred on April 9, 2000 at Yigong, Tibet, China. It started with an initial volume of material of 90?×?106 m3 comprising mainly of loose material lying on the channel bed. The rock avalanche travelled around 10 km in horizontal distance and formed a 2.5-km-long by 2.5-km-wide depositional fan with a final volume of approximately 300?×?106 m3. An energy-based debris flow runout model is used to simulate the movement process with a new entrainment model. The entrainment model considers both rolling and sliding motions in calculating the volume of eroded material. Entrainment calculation is governed by a second order partial differential equation which is solved using the finite difference method. During entrainment, it is considered that the total mass is changed due to basal erosion. Also the profile of the channel bed is adjusted accordingly due to erosion at the end of each calculation time step. For Yigong, the profile used in the simulation was extracted from a digital elevation model (DEM) with a resolution of 30 m?×?30 m. Measurements obtained from site investigation, including deposition depth and flow height at specific location, are used to verify the model. Ground elevation-based DEM before and after the event is also used to verify the simulation results where access was difficult. It is found that the calculated runout distance and the modified deposition height agree with the field observations. Moreover, the back-calculated flow characteristics based on field observations, such as flow velocity, are also used for model verifications. The results indicate that the new entrainment model is able to capture the entrainment volume and depth, runout distance, and deposition height for this case.  相似文献   

15.
DEM空间分辨率的初步分析   总被引:10,自引:0,他引:10  
分布式模型的输入及其参数具有时空变异性,模型的校正也依赖于网格单元的大小,因此需要确定适当的空间分辨率来描述和控制空间变化。随着分辨率的不同, DEM的精度以及由此提取的流域特征值(如高程、坡度、地形指数、河网长度)在统计特性上也会随之变化。对50 m分辨率的DEM平均取样获得150~950 m的9组DEM,对不同分辨率下提取的流域特征值进行了统计分析,并采用信息熵度量不同分辨率的信息量。  相似文献   

16.
The successful operation of the TanDEM-X satellite mission is the start of a new era of globally consistent and accurate digital elevation data for planet Earth. In this work available 12 m-resolution intermediate TanDEM-X products (DEM: digital elevation model; HEM: height error map; COV: coverage map; WAM: water indication mask) are evaluated over Tasmania. Elevations from the TanDEM-X intermediate digital elevation model (IDEM) are compared with (a) other global DEMs (30 m-resolution SRTM1 USGS v3 and 30 m-resolution Advanced Spaceborne Thermal Emission Reflectometer (ASTER GDEM2), (b) the local 25 m-resolution DEM made available by Tasmanian environmental authority (DPIPWE), and (c) over 15 000 accurate ground-control-points (GCPs) from the Australian National Gravity Database (ANGD). The comparison with ASTER and SRTM over the area of Tasmania involves over 500 million valid TanDEM-X IDEM elevations. The root-mean-square (RMS) of 8.8 m indicates a reasonable to good agreement of TanDEM-X IDEM and SRTM, while ASTER shows almost twice the disagreement in terms of RMS (~16.5 m). Both, ASTER and SRTM show a (mean) offset of –1.9 m and –2.3 m w.r.t. TanDEM-X IDEM, respectively. By comparisons with GCPs, we find that SRTM and ASTER overestimate the terrain height. The comparison with the AGND GCPs also allows an estimate of the absolute accuracy of the IDEM, which is found to be superior to that of SRTM or ASTER. The RMS error of 6.6 m shows that the IDEM is close to the officially denoted 4 m absolute vertical accuracy considering that the GCPs are not error free. The height error map information layer is found to a suitable first indicator of the (local) accuracy of the IDEM in a relative sense. However, we find that the HEM tends to underestimate observed differences to the GCPs. Terrain-type analyses reveal that the TanDEM-X IDEM is a very consistent elevation database over Tasmania. In conclusion, our study demonstrates that the new TanDEM-X elevation data sets provide improved high-resolution terrain information over Tasmania and beyond.  相似文献   

17.
The release of a digital elevation model (DEM) for Australia on a 9″ (~250 m) grid has enabled the computation of gravimetric terrain corrections thus allowing the computation of complete Bouguer anomalies across the continent. The terrain correction was calculated through a two‐dimensional fast Fourier transform algorithm applied to a linear, planar approximation of the terrain‐correction formula, and with a constant topographic density of 2670 kg.m‐3. The technique was applied to two datasets in order to test for instabilities in the terrain‐correction algorithm: the original 9″ DEM, and a 27″ DEM averaged from the 9″ data. The 27″ terrain corrections were compared with values supplied by the Australian Geological Survey Organisation in Tasmania: 86% of these data were found to agree within 3.91 μm.s‐2; 98% agreed to within 5.32 μm.s‐2 (1σ).  相似文献   

18.
Digital elevation models (DEMs) are widely relied upon as representations of the Earth's topographic morphology. The most widely used global DEMs available are ETOPO5, TerrainBase and JGP95E at a 5‐arc‐minute spatial resolution, and the GTOPO30 and GLOBE (version 1) global DEMs at a 30‐arc‐second spatial resolution. This paper presents the results of intercomparisons of these global DEMs over Australia, and with the GEODATA 9‐arc‐second DEM (version 1) of Australia. These DEMs were also compared to an independently produced, altimeter‐derived orthometric height database. This allows not only a totally independent assessment of the quality of these different DEMs over Australia, but also an insight into the ERS‐1 radar altimeter's ability to measure orthometric heights on land. The results of all these comparisons reveal large differences among the DEMs, with the greatest difference between JGP95E and ETOPO5 (mean 49 m, standard deviation ±274 m). The comparison with the altimeter‐derived database shows good agreement with the version 1 GEODATA DEM (mean 2 m, standard deviation ±27 m), thus demonstrating that the altimeter is a viable method for quality assessment of DEMs in lowland regions. A further conclusion is that the representation of the Australian land surface in both the JGP95E and TerrainBase global DEMs is more accurate than the higher resolution GLOBE (version 1) global DEM, even though JGP95E displays a disparity along the 140°E meridian because of the different data sources used in its construction.  相似文献   

19.
孙杰    刘静  仲振维   《地质通报》2009,28(06):726-737
河流地貌和侵蚀是构造地貌研究的核心内容。90m分辨率的SRTM3数字高程模型被广泛运用于构造地貌学的研究,但数据空白区是其在河流地貌定量研究中的瓶颈。对SRTM3数据与中国1:25万DEM数据的对比分析表明,1:25万DEM数据在生成数字河网和河流纵剖面方面不如SRTM3数据,尤其是其在平原区数字河网提取中易发生错误,但在高山峡谷地区数据质量较好,而这正是SRTM3数据空洞的主要区域。对比国内外各种SRTM空洞填补方法发现,相对于算法的改进,高精度数据的参与是填充SRTM3数据空洞的关键。因此,利用SRTM3与1:25万DEM数据的互补性,对SRTM3进行数据优化,是现阶段青藏高原河流地貌定量研究的基础。详细介绍了SRTM3空洞充填的步骤,具有实际参考价值。  相似文献   

20.
孙杰  刘静  仲振维 《地质通报》2009,28(6):726-737
河流地貌和侵蚀是构造地貌研究的核心内容。90m分辨率的SRTM3数字高程模型被广泛运用于构造地貌学的研究,但数据空白区是其在河流地貌定量研究中的瓶颈。对SRTM3数据与中国1:25万DEM数据的对比分析表明,1:25万DEM数据在生成数字河网和河流纵剖面方面不如SRTM3数据,尤其是其在平原区数字河网提取中易发生错误,但在高山峡谷地区数据质量较好,而这正是SRTM3数据空洞的主要区域。对比国内外各种SRTM空洞填补方法发现,相对于算法的改进,高精度数据的参与是填充SRTM3数据空洞的关键。因此,利用SRTM3与1:25万DEM数据的互补性,对SRTM3进行数据优化,是现阶段青藏高原河流地貌定量研究的基础。详细介绍了SRTM3空洞充填的步骤,具有实际参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号