首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
华北陆台晚古生代岩相古地理   总被引:1,自引:0,他引:1  
唐开疆 《沉积学报》1989,7(4):97-104
位于天山-阴山、昆仑山-秦岭两大纬向构造带之间的华北陆台。在稳定地壳基底上逐渐发展形成晚古生代多旋回克拉通大型含煤盆地。加里东运动使陆台缺失O3-C1沉积,晚石炭世至晚二叠世陆台为海陆交互相滨海、湖泊、三角洲沉积,随着古地理环境演变,陆台各沉积古地理环境在时、表现为由老至新、自北向南迁移。  相似文献   

2.
《International Geology Review》2012,54(11):1417-1442
ABSTRACT

The Ordos Basin, situated in the western part of the North China Craton, preserves the 150-million-year history of North China Craton disruption. Those sedimentary sources from Late Triassic to early Middle Jurassic are controlled by the southern Qinling orogenic belt and northern Yinshan orogenic belt. The Middle and Late Jurassic deposits are received from south, north, east, and west of the Ordos Basin. The Cretaceous deposits are composed of aeolian deposits, probably derived from the plateau to the east. The Ordos Basin records four stages of volcanism in the Mesozoic–Late Triassic (230–220 Ma), Early Jurassic (176 Ma), Middle Jurassic (161 Ma), and Early Cretaceous (132 Ma). Late Triassic and Early Jurassic tuff develop in the southern part of the Ordos Basin, Middle Jurassic in the northeastern part, while Early Cretaceous volcanic rocks have a banding distribution along the eastern part. Mesozoic tectonic evolution can be divided into five stages according to sedimentary and volcanic records: Late Triassic extension in a N–S direction (230–220 Ma), Late Triassic compression in a N–S direction (220–210 Ma), Late Triassic–Early Jurassic–Middle Jurassic extension in a N–S direction (210–168 Ma), Late Jurassic–Early Cretaceous compression in both N–S and E–W directions (168–136 Ma), and Early Cretaceous extension in a NE–SW direction (136–132 Ma).  相似文献   

3.
A dense grid of multichannel high-resolution seismic sections from the Bay of Kiel in the western Baltic Sea has been interpreted in order to reveal the Mesozoic and Cenozoic geological evolution of the northern part of the North German Basin. The overall geological evolution of the study area can be separated into four distinct periods. During the Triassic and the Early Jurassic, E–W extension and the deposition of clastic sediments initiated the movement of the underlying Zechstein evaporites. The deposition ceased during the Middle Jurassic, when the entire area was uplifted as a result of the Mid North Sea Doming. The uplift resulted in a pronounced erosion of Upper Triassic and Lower Jurassic strata. This event is marked by a clear angular unconformity on all the seismic sections. The region remained an area of non-deposition until the end of the Early Cretaceous, when the sedimentation resumed in the area. Throughout the Late Cretaceous the sedimentation took place under tectonic quiescence. Reactivated salt movement is observed at the Cretaceous Cenozoic transition as a result of the change from an extensional to compressional regional stress field. The vertical salt movement influenced the Cenozoic sedimentation and resulted in thin-skinned faulting.  相似文献   

4.
徐建强  李忠  石永红 《地质科学》2012,(4):1099-1115
鲁西隆起保存并出露比较完整的晚中生代沉积记录,是研究华北东部晚中生代构造演化的重要窗口。本文采用碎屑锆石LA-MC-ICP-MS测年方法分析鲁西隆起北缘淄川地区坊子组和三台组中的两个砂岩样品,以此探讨华北东部侏罗纪的沉积物源并约束构造古地理格架。两个砂岩样品具有近似的U-Pb年龄谱。古元古代和新太古代两组U-Pb年龄及其Hf同位素组成与广泛出露于北部的华北克拉通基底一致,根据缺乏新元古代中期(850~700 Ma)岩浆年龄和三叠纪变质年龄的事实,以此可以排除扬子板块以及现今临近于鲁西隆起东南部的苏鲁造山带物源。坊子组和三台组碎屑锆石显生宙年龄(393~256 Ma)记录的晚古生代岩浆活动均未发现于鲁西隆起及其邻近地区,而可以与大量出露于华北北缘及其北部的兴-蒙造山带的岩浆活动进行对比。此外,相当部分的显生宙碎屑锆石(183 Ma、462 Ma和324~154 Ma)具有正的εHf(t)值(0.9~12.7)同位素特征,也与兴-蒙造山带特征相似,且三台组砂岩中显生宙碎屑锆石及其中εHf(t)值为正值的比例较坊子组均增多。研究认为,华北北缘及其北部的兴-蒙造山带在侏罗纪时从早到晚不断抬升、剥蚀,形成相对华北克拉通内部的高地势特点,由此大量的剥蚀产物向南输运而成为鲁西隆起侏罗系的主要碎屑物源。  相似文献   

5.
钻探资料证实南海东北部发育海相中生界。潮汕坳陷是南海东北部最大残留坳陷,面积达3. 7×10 4 km2,经历了晚三叠世张裂初期、侏罗纪坳陷期、晚侏罗世末期第一次构造反转期、早白垩世再沉降期、晚白垩世晚期第二次构造反转期及新近纪区域热沉降期等6个构造演化阶段,充填了滨浅海、半深海等海相沉积及河湖相等陆相沉积。潮汕坳陷侏罗系半封闭海湾型烃源岩有机质丰度相对较高,泥岩地层厚,生烃能力强,油气地质条件好,具有较好的油气勘探前景。  相似文献   

6.
中侏罗世-早白垩世华北地台东部的北黄海盆地受古亚洲构造体制向滨太平洋构造体制转换的影响,其构造演化经历了伸展-反转挤压-伸展的转变.构造体制的差异不但表现在大地构造性质及其产生的地质效应上,也表现在盆地沉积特征、古生物及古气候等方面.本文以北黄海盆地东部坳陷X1井中侏罗统至下白垩统为研究对象,利用泥岩元素地球化学特征对古气候的指示,结合盆地沉积特征及古生物资料,对古气候演化展开研究.研究显示,中侏罗世-早白垩世X1井泥岩样品的Sr/Cu比值(2.12~34.10)、Sr/Ba比值(0.16~1.60)、Rb/Sr比值(0.13~1.23)、Fe2O3/FeO比值(0.22~11.10)、V/Cr比值(0.91~1.78)、V/Sc比值(4.89~8.33)、Ni/Co比值(1.14~3.85)、δU比值(0.50~0.84)和U/Th比值(0.11~0.24)的纵向变化反映古气候经历了温湿→整体湿润、短暂干热→干热的演化.沉积物经历了暗色细粒沉积物为主→灰色、灰色夹灰绿色、灰色与红褐色互层细粒沉积物为主→灰色粗粒沉积物和红褐色、灰黄色细粒沉积物为主的变化.古生物经历了喜湿植物丰富→喜热植物出现→喜热植物丰富的过程.结果表明,受古亚洲构造体制和滨太平洋构造体制的影响,华北地台向北漂移,北黄海盆地古气候经历了由中侏罗世-晚侏罗世早期以温湿气候为主,至晚侏罗世晚期-早白垩世早期整体相对湿润,出现短暂干热气候,到早白垩世中期-早白垩世晚期为干热气候的演化.北黄海盆地中侏罗世-早白垩世古气候由温湿向干热的转变正是对华北地台东部晚中生代两大构造体制转换的响应.   相似文献   

7.
The identification of syn- and late-orogenic flysch deposits, extending from the Betic Cordillera to the Southern Apennines, assists in the reconstruction of the tectonic-sedimentary evolution of the perimediterranean chains. A microplate was located between the European and African Plates during the Late Jurassic–Early Cretaceous, bordered northwards by the Piemontese Ocean and southwards by another (North Africa ‘Flysch’ Basin or Maghrebian) Ocean. The Piemontese Ocean and the northern margin of the microplate were structured from the Late Cretaceous to the Eocene to create an Eo-alpine Chain. The southern margin of the microplate was deformed in the Aquitanian, when the internal areas of the Maghrebian Ocean were characterized by syn-orogenic flysch deposits. This episode culminated with metamorphism (25–22 Ma) and nappe emplacement, which destroyed the former palaeogeography and created an orogenic belt (AlKaPeCa). Afterwards, a lower Burdigalian late-orogenic cycle started in the deformed area, which as a result of the opening of the Algero-Provençal Basin, caused the fragmentation of the AlKaPeCa, its thrusting on the ‘Flysch’ Basin and the collision with the North Africa and South Iberia Margins. These latter were folded and thrusted, the ‘Flysch’ Units pushed over the External Domain and also back-thrusted. Langhian late-orogenic deposits suture the new tectonic features. Finally, the whole orogen was thrust onto the foredeep during the Middle–Late Miocene.  相似文献   

8.
对小兴安岭北部孙吴-嘉荫地区早中生代花岗岩进行了年代学和地球化学研究,据此探讨其成因及形成的构造背景。锆石U-Pb同位素定年结果表明,研究区早中生代花岗岩分为晚三叠世和早侏罗世两期,形成时代分别为210 Ma和187~181 Ma。晚三叠世碱长花岗岩属铝质A型花岗岩,岩浆源区为新元古代从亏损地幔中增生的基性火成岩地壳。早侏罗世英云闪长岩-花岗闪长岩和二长花岗岩属埃达克岩,是由加厚下地壳物质部分熔融形成的;正长花岗岩-碱长花岗岩与同期埃达克岩具明显不同的地球化学特征,岩浆源区为中元古代从亏损地幔中增生的基性地壳物质。结合区域地质构造演化特征,认为晚三叠世花岗岩是华北板块和西伯利亚板块碰撞造山后伸展构造环境下的产物,早侏罗世花岗岩的形成与古太平洋板块俯冲产生的挤压构造环境有关。  相似文献   

9.
宋雪  程日辉  高丹  沈艳杰  王嘹亮 《世界地质》2015,34(4):1002-1012
以北黄海盆地东部坳陷北部侏罗系为目的层,探讨侏罗纪北部物源-沉积体系的岩矿特征、物源区构造背景和物源方向。研究区侏罗系是一套陆相碎屑岩沉积,主要岩石类型为岩屑石英砂岩和岩屑砂岩。通过对北黄海盆地东部坳陷侏罗系沉积序列的研究,识别出三角洲、扇三角洲和湖泊等3类沉积环境。根据碎屑组分和灰岩丰度可知,北部物源-沉积体系为风化物源,并存在附加的火山物源,物源区为再旋回造山带,沉积体系为自北向南方向的扇三角洲沉积体系。对岩石样品进行微观特征及粒度特征研究,识别出沉积微相类型有扇三角洲前缘亚相的远砂坝、河口坝、水下河道和重力水下河道4种微相。  相似文献   

10.
萨热克盆地库孜贡苏组是萨热克铜矿的赋矿层位,开展沉积相、物源区及古流向研究对隐伏铜矿的勘探具有重要意义。选取萨热克铜矿北矿带库孜贡苏组地表矿化最好的砾岩展开砾石统计分析,结果表明,偏斜度显示砾岩为冲积扇相沉积,砾石叠瓦状和砂岩斜层理产状统计显示古流向为北北东向;砾石成分主要为石英、石英砂岩、砂岩,石英岩等;粒度分布呈宽峰态或尖峰态;物源区为元古宇长城系阿克苏群变质岩剥蚀区;物源补给分为主河流补给和支河流补给2种方式。冲积扇相、古流向、物源区分析确定了矿体的范围、最优的勘探线布置方位和潜在的找矿靶区,具有很好的勘探意义。  相似文献   

11.
The Middle Triassic–Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo–Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.  相似文献   

12.
Upper Triassic to Upper Jurassic strata in the western and northern Sichuan Basin were deposited in a synorogenic foreland basin. Ion–microprobe U–Pb analysis of 364 detrital zircon grains from five Late Triassic to Late Jurassic sandstone samples in the northern Sichuan Basin and several published Middle Triassic to Middle Jurassic samples in the eastern Songpan–Ganzi Complex and western and inner Sichuan Basin provide an initial framework for understanding the Late Triassic to Late Jurassic provenance of western and northern Sichuan Basin. For further understanding, the paleogeographic setting of these areas and neighboring hinterlands was constructed. Combined with analysis of depocenter migration, thermochronology and detrital zircon provenance, the western and northern Sichuan Basin is displayed as a transferred foreland basin from Late Triassic to Late Jurassic. The Upper Triassic Xujiahe depocenter was located at the front of the Longmen Shan belt, and sediments in the western Sichuan Basin shared the same provenances with the Middle–Upper Triassic in the Songpan–Ganzi Complex, whereas the South Qinling fed the northern Sichuan Basin. The synorogenic depocenter transferred to the front of Micang Shan during the early Middle Jurassic and at the front of the Daba Shan during the middle–late Middle Jurassic. Zircons of the Middle Jurassic were sourced from the North Qinling, South Qinling and northern Yangtze Craton. The depocenter returned to the front of the Micang Shan again during the Late Jurassic, and the South Qinling and northern Yangtze Craton was the main provenance. The detrital zircon U–Pb ages imply that the South and North China collision was probably not finished at the Late Jurassic.  相似文献   

13.
江西相山地区中,新生低构造演化对富大铀矿形成的制约   总被引:1,自引:1,他引:0  
江西相山铀矿田是我国目前最大的火山岩型铀矿田,一直是铀矿地质学界的研究热点之一。大量的新资料支持以下的构造演化模型:成矿前的走滑剪切;成矿期的伸展拉张;成矿后的挤压逆冲。这一构造演化体系是形成相山富大铀矿田的有利地质构造背景。  相似文献   

14.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   


15.
[研究目的]湖南省矿产资源丰富,矿种及成因类型繁多,但对各类矿产形成的时代和构造背景尚缺乏系统归纳和总结.[研究方法]本文在既有区域矿产资料基础上,结合近些年区域构造演化、成岩成矿年龄、矿床成因机制等研究成果,对湖南省成矿地质事件及各期成矿事件的构造背景、矿床成因、矿产发育和分布特征等进行了系统探讨和总结.[研究结果]...  相似文献   

16.
南沙海区及其周缘中-新生代岩浆活动及构造意义   总被引:16,自引:3,他引:13  
通过对南沙海区及其周缘地区中-新生代以来4个主要地质时期即燕山期、喜山早期、喜山晚期一幕和二幕各种类型岩浆岩的发育特征(包括时空分布、地球化学及构造环境)的综合分析,重构了研究区中-新生代岩浆活动的演化历程:燕山期(侏罗纪到白垩纪)在南沙西面和西南面陆区以中酸性岩浆活动为主,代表中生代东亚陆缘火山岩带的南段。同时在南沙与加里曼丹之间广泛发育的是基性-超基性岩,是在俯冲过程中折返到浅部的古南海洋壳碎片。喜山早期(古新世至始新世)岩浆活动微弱。喜山晚期一幕(晚渐新世至中中新世)在加里曼丹—卡加延一带岩浆活动相对重新活跃,西段主要有英安岩、花岗闪长岩、安山岩、闪长岩等,东段主要为玄武安山岩,但规模较小,似乎不足以构成与古南海俯冲伴生的火山岩带。喜山晚期二幕(晚中新世至第四纪)岩浆活动出现高峰,为大规模的中基性火山喷发,与燕山期及喜山早期截然不同,在中南半岛南部和加里曼丹岛中-北部尤为广泛,可能是该区出现上涌的地幔热团的指示。  相似文献   

17.
1 Introduction A series of studies have indicated that there were two extensional phases in the North Sea (Fig. 1). An earlier period (Late Permian-Early Triassic) of rifting occurred widely in these areas, with predominant extension direction of W-E (F?rseth, 1996; F?rseth et al., 1997). In contrast to the widely distributed Permo-Triassic extension, Jurassic extension in the North Sea were generally much more localized into the three main rift arms (Fig. 1): the Viking Graben, Moray…  相似文献   

18.
Single grain U–Pb ages of sediments from the Beipiao Basin, Northeast China were conducted to determine the evolution of basin provenance. Zircons from a sandstone in the Upper Triassic Laohugou Formation yield a wide range of ages and, according to their U–Pb ages, fall into four groups: 209.3±4.0–304.2±4.9, 1565.5±71–2154±50, 2400±35–2499±9, 2512±11–2557±74 Ma. These ages indicate that the zircons were principally derived from Late Archean, Proterozoic and Late Paleozoic plutonic rocks. Intrusions in the Mongolian Accretion Belt and the northern margin of the North China Block (NCB) were probably the main source of the sediments in the basin, but the easterly Liaodong Block also provided minor detrital material, with lower U–Pb ages, during the Late Triassic. Most of the U–Pb ages from zircons collected from a sandstone in the Lower Jurassic Beipiao Formation range from 194.3±2.9 to 233.8±4.2 Ma, reflecting the major sediment source during the Early Jurassic. Zircons derived from Late Indosinian plutonic rocks increased, which suggests that the detritus was supplied mainly from the interior of the Yan-Liao Orogenic Belt, especially from the Liaodong Block. Late Indosinian zircons (200–230 Ma) were eroded and deposited in the Lower Jurassic Beipiao Formation, and this implies that intensive tectonic activation and uplift of the Yan-Liao Orogenic Belt in the Mesozoic commenced in the Late Indosinian.  相似文献   

19.
Northern Guangdong is an important part of Nanling tungsten–tin metallogenic belt, South China. The tungsten mineralization in this area consists of mainly quartz–wolframite vein-type mineralization, with W–Sn polymetallic deposits mostly distributed at the outer contact zone between concealed Late Jurassic granitic stocks and Cambrian–Ordovician low-metamorphosed sandstones and shales. Molybdenite Re–Os and muscovite 40Ar/39Ar isotopic dating of three typical tungsten vein-type deposits (Yaoling, Meiziwo, and Jubankeng) in northern Guangdong, show that two episodes of Late Jurassic W–Sn polymetallic mineralization occurred in this area: an early episode during the Late Jurassic (158–159?Ma) represented by the Yaoling, Hongling, and Meiziwo tungsten deposits, and a younger event during the Early Cretaceous (138?Ma) represented by the Jubankeng deposit. Analysis of available radiometric ages of several W–Sn deposits in the Nanling region indicate that these deposits formed at several intervals during the Mesozoic at 90–100, 134–140, 144–162, and 210–235?Ma, and that large-scale W–Sn mineralization in this region occurred mainly between 150 and 160?Ma.  相似文献   

20.
通过实测磷灰石裂变径迹方法,并结合前人研究结果,分析了准东构造隆升特征,探讨了其与地层沉积、构造响应及对砂岩型铀成矿的制约.研究表明,210~180 Ma,准东缘卡拉麦里地区持续隆升遭受剥蚀,而卡拉麦里山北部奥克什山地区隆升-剥蚀时间相对较晚,于160~80 Ma快速隆升,该期快速隆升控制了五彩湾-老君庙-将军庙与卡姆斯特地区沉积地层发育、古水流方向、区域不整合与构造掀斜等,从而控制着2个地区的砂岩型铀矿成矿条件.五彩湾-老君庙-将军庙地区下侏罗统物源充足、砂体与氧化发育,是该地区主要找矿目的层,而卡姆斯特地区随着晚侏罗世-晚白垩世,盆地东北部奥克什山乃至青格里底山的隆升,增加了物源供给,下侏罗统沉积地层在该地区表现出了更好的成矿潜力.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号