共查询到20条相似文献,搜索用时 16 毫秒
1.
神经网络辅助的GPS/INS组合导航自适应滤波算法 总被引:9,自引:2,他引:9
首先利用预报残差构造的最优自适应因子设计GPS/INS组合导航自适应滤波器。并针对BP神经网络存在的训练速度慢、容易陷入局部极小等问题,给出网络的改进算法。利用神经网络对自适应滤波器状态方程的预报值进行在线修正,给出神经网络辅助的GPS/INS组合导航自适应滤波算法。最后,利用实测数据进行验证。结果表明,改进的神经网络算法明显提高网络收敛速度;两种自适应滤波算法相对标准组合导航算法都能够可靠地反映载体运动轨迹;神经网络辅助的GPS/INS组合导航自适应滤波算法相对GPS/INS组合导航自适应滤波算法在精度和可靠性方面又有明显提高。 相似文献
2.
一种两步自适应抗差Kalman滤波在GPS/INS组合导航中的应用 总被引:3,自引:0,他引:3
当GPS观测可用时,如何提高组合导航的可靠性、连续性以及导航精度是组合导航重要的研究主题。针对伪距、伪距率紧组合导航精度低、姿态角误差修正不精确的缺点,本文从参数可观测性角度提出一种两步自适应Kalman滤波算法。首先简单介绍了紧组合Kalman滤波的过程,然后给出了两步自适应抗差滤波的公式和具体步骤,并且进行了分析和比较。最后用实测算例对提出的算法进行验证。结果表明,相比较于伪距、伪距率紧组合Kalman滤波,两步自适应抗差滤波能够控制动态扰动异常和观测异常的影响;导航精度不会随着组合周期的增长、INS惯性元件误差的增大而降低;在惯性元件误差较大的情形下也能够很好地估计元件误差,提高姿态角精度。 相似文献
3.
简要介绍了GPS/INS松组合导航系统状态方程和观测方程。针对标准Kalman滤波算法存在的状态方程截断误差、噪声统计特性的不确定性以及状态扰动异常的影响,给出了一种应用于GPS/INS组合导航系统的迭代滤波算法。该算法采用迭代策略,不断利用观测信息实时修正状态预报值。实测数据计算结果表明,通过对状态预报值的实时修正,该算法能够很好地抑制状态预报信息的不确定性和扰动异常等对导航解的影响。其滤波解精度明显优于标准Kalman滤波。 相似文献
4.
在顾及动力学模型随机误差的情况下,设计了一种GPS/INS自适应滤波算法。针对BP神经网络存在的训练速度慢、易陷入局部极小值等问题,对神经网络学习算法进行了改进。利用神经网络进一步减小系统误差对导航解的影响,给出了顾及动力学模型随机误差和系统误差的GPS/INS自适应滤波算法,并利用实测数据验证了算法的有效性。 相似文献
5.
GPS/DR组合导航自适应Kalman滤波算法 总被引:2,自引:0,他引:2
针对GPS/DR组合导航Kalman滤波的异常扰动影响问题,引入了自适应滤波算法.给出了由预测残差确定自适应因子的过程.利用实测数据进行验证,结果表明无论是单因子自适应滤波还是多因子自适应滤波都能够很好地控制状态异常对滤波估值的影响,滤波精度均优于标准Kalman滤波导航解;而且因为多因子自适应滤波避免损失可靠的状态参数信息,较单因子自适应滤波,精度又有明显提高. 相似文献
6.
针对GPS/DR组合导航Kalman滤波的异常扰动影响问题,引入了自适应滤波算法。给出了由预测残差确定自适应因子的过程。利用实测数据进行验证,结果表明无论是单因子自适应滤波还是多因子自适应滤波都能够很好地控制状态异常对滤波估值的影响,滤波精度均优于标准Kalman滤波导航解;而且因为多因子自适应滤波避免损失可靠的状态参数信息,较单因子自适应滤波,精度又有明显提高。 相似文献
7.
针对GNSS/INS松组合导航系统观测信息无冗余,而且观测信息可能存在异常的情形,结合自适应滤波算法和神经网络算法,提出了两种GNSS/INS抗差自适应组合导航解算方案,根据观测信息和动力学模型信息异常情况,给出了4种GNSS/INS抗差自适应滤波算法。利用实测数据进行了验证,结果表明,4种抗差自适应滤波算法在观测信息不足的情况下,不但能够抑制动力学模型扰动异常对导航解的影响,而且能够较好地抑制异常观测信息对导航解的影响。 相似文献
8.
9.
对GNSS/INS组合导航误差补偿与自适应滤波理论进行了系统而深入的研究。针对GNSS/INS组合导航实际应用中存在的随机模型不精确、GNSS观测条件不佳、INS误差累积迅速等问题,引入Allan方差、ARMA模型、载波相位平滑伪距、伪距差分求解速度、自适应滤波、误差模型修正等算法,对其进行改进并进一步提高了导航精度和可靠性。 相似文献
10.
GNSS/INS组合导航中,姿态解算和比力转换精度是影响精度的关键因素,且GNSS观测数据存在粗差,易对组合导航系统产生影响,针对以上问题,本文设计了一种顾及姿态解算精度的组合导航抗差算法,利用罗德里格斯公式进行姿态更新和比力转换,通过引入抗差估计理论,利用观测值和预测值的差值构造抗差因子,重新设计观测量噪声矩阵.一组... 相似文献
11.
简要介绍了GPS/INS松组合导航系统状态方程和观测方程.针对标准Kalman滤波算法存在的状态方程截断误差、噪声统计特性的不确定性以及状态扰动异常的影响,给出了一种应用于GPS/INS组合导航系统的迭代滤波算法.该算法采用迭代策略,不断利用观测信息实时修正状态预报值.实测数据计算结果表明,通过对状态预报值的实时修正,该算法能够很好地抑制状态预报信息的不确定性和扰动异常等对导航解的影响.其滤波解精度明显优于标准Kalman滤波. 相似文献
12.
多传感器组合的方式可以较好地应对全球导航卫星系统信号被遮挡、干扰等情况下的导航定位问题,滤波方法是导航定位中将多源数据融合最常使用的方法之一。在滤波过程中,组合导航的系统噪声和量测噪声无法实时精确地测定,常通过自适应滤波的方法进行时间更新和量测更新的平衡解算。贝叶斯自适应滤波方法在很多时候具有较好的效果,但是和其他的自适应滤波方法一样,该类方法都需要进行自适应因子的选取。本文根据组合导航对于实时性要求及其闭环反馈的特殊性,在变分贝叶斯自适应滤波的基础上进行了算法的优化,给出了一种调节因子的动态计算方法,并以GNSS和惯性导航系统组合系统为例,通过模拟和实测试验进行验证。试验结果表明,本文算法不需要通过迭代计算的方法就可以获取高精度组合结果,提升了计算效率;对于真实的动态场景中,本文算法的调节因子动态自适应确定,结果更具有优越性。 相似文献
13.
利用随机系数矩阵的GNSS/INS组合导航Kalman滤波算法 总被引:1,自引:0,他引:1
在动力学模型可靠的情况下,为避免观测异常对滤波结果的影响,建立处理观测异常的观测模型集合,以观测模型集合中系数矩阵的期望来代替观测方程的系数矩阵,利用随机系数矩阵Kalman滤波算法来控制观测信息异常的影响。算例结果表明,该算法可以有效地控制观测值异常对滤波结果的影响。 相似文献
14.
构建了适合北斗三频信号的北斗/惯性紧组合模型。针对三频模糊度解算算法的错误整数解可能对滤波结果造成"污染"这一问题,应用了抗差自适应Kalman滤波算法,优化了所建的模型。车载组合导航实验结果表明:三频模糊度解算算法得到的模糊度正确率平均值为99.84%,直接用于紧组合模型将造成最高达0.7 m的天向位置误差;抗差自适应Kalman滤波算法能消除错误模糊度整数解的影响,东、北、天三个方向的位置最大偏差值在厘米级。此外,载体姿态和速度频繁变化造成的状态预测误差也被自适应处理校正,组合导航的位置均方根误差为东向0.007 m,北向0.014 m,天向0.023 m。研究表明,在三频信号条件下,所采用的抗差自适应Kalman滤波能够增强所构建的紧组合模型的可靠性。 相似文献
15.
IMU/GPS组合导航系统自适应Kalman滤波算法 总被引:10,自引:0,他引:10
给出了IMU在地固坐标系中的误差方程,介绍并分析了自适应滤波和渐消Kalman滤波算法原理,然后将渐消因子引入到自适应滤波算法中,并将其应用到IMU/GPS松组合导航系统中,最后利用一个实际算例证明了该组合导航系统的有效性。 相似文献
16.
全球定位系统/航位推算组合导航定位中,由于目标运动的不确定性,GPS接收机与DR器件接收的数据存在噪声,使预置目标运动模型通常很难得到较高跟踪精度,针对应用常规卡尔曼滤波进行组合导航解算由于噪声统计特性未知而引起滤波不稳定的问题,本文提出了一种基于新息序列的量测计算进行自适应估计的卡尔曼滤波算法。该算法通过对新息方差强度进行极大似然估计,将新息计算引入卡尔曼滤波器的增益计算,达到控制发散的目的。最后对改进的算法与一般卡尔曼滤波算法做了对比仿真试验分析,结果表明了改进算法的有效性。 相似文献
17.
18.
神经网络辅助的GPS/INS组合导航故障检测算法 总被引:2,自引:0,他引:2
针对GPS/INS松组合导航系统观测信息无冗余,而且观测信息可能存在故障的情形,提出一种神经网络辅助的组合导航故障检测算法。该算法克服了基于模型的故障检测算法受模型误差影响的局限性;能够自动地对观测信息进行故障的检测、定位和剔除;能够基于故障检测后可靠的观测信息进一步调整动力学模型信息对导航解的贡献;能够在GPS失锁时,较好地进行导航预报。最后利用车载实测数据进行验证,结果表明该算法能够很好地从模型误差中分离出观测信息含有的故障信息,降低了故障检测算法存在的虚警率,避免故障信息对导航解的影响;且GPS失锁时,神经网络的预报输出在一定程度上能够进一步提高导航解的精度。 相似文献
19.
支持向量回归辅助的GPS/INS组合导航抗差自适应算法 总被引:1,自引:0,他引:1
卡尔曼滤波残差分量受到观测信息误差和动力学模型误差的双重影响,由于GPS/INS松耦合导航系统中观测值个数少于状态参数个数,导致异常检测时难以正确区分误差来源,提出一种支持向量回归辅助的组合导航抗差自适应算法。该算法克服了组合系统观测信息无冗余情况下异常检测的局限性,基于遗传算法参数寻优构建回归模型,预测次优观测值,结合整体异常检验法自主选择抗差或自适应滤波,进而调整观测值或动力学模型对导航解的贡献,进行导航预报。最后利用车载实测数据进行验证,结果表明:该算法能够对存在的异常故障智能判定,减弱观测值异常和动力学模型误差影响,保证组合导航精度,提高导航解可靠性。 相似文献
20.
基于小波阈值消噪自适应滤波的GPS/INS组合导航 总被引:9,自引:2,他引:9
惯导系统中惯性元件误差是影响惯性导航及其组合导航精度的重要因素.在GPS/INS组合导航自适应滤波的基础之上,提出利用小波进行阈值消噪以提高组合导航精度.首先对惯性元件输出信号进行频谱分析,确定相应的多分辨分析尺度以及不同尺度下对高频系数采取的相应措施.对噪声占主要成分的尺度将其高频系数全部置零,对噪声和有用信号共同占有的尺度将其高频系数作阈值处理.利用实测数据进行验证,结果表明这种方法能够有效地削弱惯性元件误差的影响,提高GPS/INS组合导航系统的精度和可靠性. 相似文献