首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constrain a three-dimensional thermomechanical model of Greenland ice sheet (GrIS) evolution from the Last Glacial Maximum (LGM, 21 ka BP) to the present-day using, primarily, observations of relative sea level (RSL) as well as field data on past ice extent. Our new model (Huy2) fits a majority of the observations and is characterised by a number of key features: (i) the ice sheet had an excess volume (relative to present) of 4.1 m ice-equivalent sea level at the LGM, which increased to reach a maximum value of 4.6 m at 16.5 ka BP; (ii) retreat from the continental shelf was not continuous around the entire margin, as there was a Younger Dryas readvance in some areas. The final episode of marine retreat was rapid and relatively late (c. 12 ka BP), leaving the ice sheet land based by 10 ka BP; (iii) in response to the Holocene Thermal Maximum (HTM) the ice margin retreated behind its present-day position by up to 80 km in the southwest, 20 km in the south and 80 km in a small area of the northeast. As a result of this retreat the modelled ice sheet reaches a minimum extent between 5 and 4 ka BP, which corresponds to a deficit volume (relative to present) of 0.17 m ice-equivalent sea level. Our results suggest that remaining discrepancies between the model and the observations are likely associated with non-Greenland ice load, differences between modelled and observed present-day ice elevation around the margin, lateral variations in Earth structure and/or the pattern of ice margin retreat.  相似文献   

2.
Digital elevation models of the area around the Solway Lowlands reveal complex subglacial bedform imprints relating the central sector of the LGM British and Irish Ice Sheet. Drumlin and lineation mapping in four case studies show that glacier flow directions switched significantly through time. These are summarised in four major flow phases in the region: Phase I flow was from a dominant Scottish dispersal centre, which transported Criffel granite erratics to the Eden Valley and forced Lake District ice eastwards over the Pennines at Stainmore; Phase II involved easterly flow of Lake District and Scottish ice through the Tyne Gap and Stainmore Gap with an ice divide located over the Solway Firth; Phase III was a dominant westerly flow from upland dispersal centres into the Solway lowlands and along the Solway Firth due to draw down of ice into the Irish Sea basin; Phase IV was characterised by unconstrained advance of Scottish ice across the Solway Firth. Forcing of a numerical model of ice sheet inception and decay by the Greenland ice core record facilitates an assessment of the potential for rapid ice flow directional switching during one glacial cycle. The model indicates that, after fluctuations of smaller radially flowing ice caps prior to 30 ka BP, the ice sheet grows to produce an elongate, triangular-shaped dome over NW England and SW Scotland at the LGM at 19.5 ka BP. Recession after 18.5 ka BP displays a complex pattern of significant ice flow directional switches over relatively short timescales, complementing the geomorphologically-based assessments of palaeo-ice dynamics. The palaeoglaciological implications of this combined geomorphic and modelling approach are that: (a) the central sector of the BIIS was as a major dispersal centre for only ca 2.5 ka after the LGM; (b) the ice sheet had no real steady state and comprised constantly migrating dispersal centres and ice divides; (c) subglacial streamlining of flow sets was completed over short phases of fast flow activity, with some flow reversals taking place in less than 300 years.  相似文献   

3.
The geomorphic, stratigraphic and sedimentological characteristics of glaciolacustrine sediments in the metropolitan Detroit, Michigan area were studied to determine environments of deposition and make paleogeographic reconstructions. Nine lithofacies were identified and paleoenvironments interpreted based on their morphostratigraphic relationships with relict landforms. The sediments studied are found southeast of the Defiance and Birmingham moraines lying beneath a lowland characterized by a low morainal swell (Detroit moraine) and a series of lacustrine terraces that descend progressively in elevation southeastward. The glaciolacustrine sediments were deposited approximately 14.3–12.4 kA BP during the Port Bruce and Port Huron glacial phases of late Wisconsinan time, and are related to proglacial paleolakes Maumee, Arkona, Whittlesey, Warren, Wayne, Grassmere, Lundy and Rouge. The glaciolacustrine section is typically 2–4 m thick and consists of a basal unit of wavy-bedded clayey diamicton overlain by a surficial deposit of stratified and cross-stratified sand and gravel. The basal unit is comprised of subaqueous debris flow deposits that accumulated as subaqueous moraine in paleolake Maumee along the retreating front of the Huron lobe. The surficial deposits of sand and gravel were formed by traction, resulting from lacustrine wave activity and fluvial processes, in lakebed plain, beach ridge and deltaic depositional settings. Much of the lake-margin sand and gravel was derived from clayey diamicton by lacustrine wave action and winnowing, and that associated with paleolakes of the Port Huron phase is largely reworked Port Bruce sediment. Paleogeographic reconstructions show that the Defiance, Birmingham and Detroit moraines, Defiance and Rochester channels, and the Rochester delta, were deposited penecontemporaneously as paleolake Maumee expanded northward across the map area. A unique type of wavy bedform is characteristic of clayey diamicton deposited by subaqueous mass flow in the study area that is useful for differentiating sediment: 1) deposited by mass flow in subaqueous vs. subaerial settings, and 2) deposited by subaqueous mass flow vs. basal till. These bedforms are a useful tool for identifying subglacial meltwater deposits, and facilitate the mapping and correlation of glacial sediments based on till sheets. The map area provides a continental record of ice sheet dynamics along the southern margin of the Laurentide ice sheet during Heinrich event H-1. The record reveals rapid glacial retreat (~ 0.8 km/yr) contemporaneous with the discharge of a large volume of meltwater. Evidence in the study area for subglacial meltwater is problematic, but indications that periglacial conditions persisted in the map area until ~ 12.7 kA BP, and extended for 200 km or more south of the ice front suggest that a frozen substrate may have contributed to instability of the LIS.  相似文献   

4.
《Quaternary Science Reviews》2003,22(15-17):1687-1700
Many explanations have been provided for variations of the spatial distribution and thickness of till sheets. This paper gives new insight into the architecture of a stratigraphically distinct till sheet as a function of the type of substratum and preadvance topography at a scale of ∼10 km. This emphasises the sensitivity of the subglacial system to changes in the basal drainage conditions. The study area is the forefield of Sléttjökull at the northern margin of the Mýrdalsjökull ice cap, central south Iceland. Here, detailed lithostratigraphical and sedimentological investigations, including mapping of the thickness for two till units, sediment logging, clast fabric and geotechnical measurements provide a basis for interpretations. The results show that the thickness of a stratigraphically distinct till sheet is directly correlated to the type of substratum. Where the substratum consists of sorted sediments the till is thin. Conversely, the till is thick where the substratum consists of till overlying sorted sediments. A sedimentological model is presented in which till thickness is tied to the variable hydraulic conditions experienced in a deforming subglacial bed.  相似文献   

5.
The Northern Till is a thick (>65 m) deformation till underlying some 7500 km2 of Southern Ontario, Canada including the Peterborough Drumlin Field. It was deposited below the Lake Ontario ice stream of the Laurentide Ice Sheet. The till rests on glaciotectonized aquifer sediments and consists of multiple beds of till up to 6 m thick. These are separated by boulder lags, sometimes in the form of striated pavements, with thin (<30 cm) interbeds of poorly sorted waterlaid sand. The composite till stratigraphy indicates ‘punctuated aggradation’ where the subglacial bed was built up incrementally by the repeated ‘immobilization’ of deforming overpressured till layers. Boulders and sands indicate pauses in subglacial aggradation marked by sluggish sheet flows of water that reworked the top of the underlying till. Interbeds are laterally extensive and correlated using downhole electrical conductivity, core recovery and natural gamma data. A 3-D finite element model (FEFLOW) using data from 200 cored and geophysically logged boreholes, and a large digital water well dataset of 3400 individual records shows that the till functions as a ‘leaky aquitard’ as a consequence of water flow through interbeds. It is proposed that interbeds played a similar role in the subglacial hydraulic system below the Laurentide Ice Sheet by allowing drainage of excess porewater pressures in deforming sediment and promoting deposition of till. This is in agreement with theoretical studies of deforming bed dynamics and observations at modern glaciers where porewater in the deforming layer is discharged into underlying aquifers. In this way, the presence of interbeds may be fundamental in retarding downglacier transport of deforming bed material thereby promoting the build-up of thick subglacial till successions.  相似文献   

6.
Ice streams are the fast-flowing zones of ice sheets that can discharge a large flux of ice. The glaciated western Svalbard margin consists of several cross-shelf troughs which are the former ice stream drainage pathways during the Pliocene–Pleistocene glaciations. From an integrated analysis of high-resolution multibeam swath-bathymetric data and several high-resolution two-dimensional reflection seismic profiles across the western and northwestern Svalbard margin we infer the ice stream flow directions and the deposition centres of glacial debris that the ice streams deposited on the outer margin. Our results show that the northwestern margin of Svalbard experienced a switching of a major ice stream. Based on correlation with the regional seismic stratigraphy as well as the results from ODP 911 on Yermak Plateau and ODP 986 farther south on the western margin of Spitsbergen, off Van Mijenfjord, we find that first a northwestward flowing ice stream developed during initial northern hemispheric cooling (starting ~2.8–2.6 Ma). A switch in ice stream flow direction to the present-day Kongsfjorden cross-shelf trough took place during a glaciation at ~1.5 Ma or probably later during an intensive major glaciation phase known as the ‘Mid-Pleistocene Revolution’ starting at ~1.0 Ma. The seismic and bathymetric data suggest that the switch was abrupt rather than gradual and we attribute it to the reaching of a tipping point when growth of the Svalbard ice sheet had reached a critical thickness and the ice sheet could overcome a topographic barrier.  相似文献   

7.
Direct exploration of subglacial lakes buried deep under the Antarctic Ice Sheet has yet to be achieved. However, at retreating margins of the ice sheet, there are a number of locations where former subglacial lakes are emerging from under the ice but remain perennially ice covered. One of these lakes, Hodgson Lake (72°00.549′S, 068°27.708′W) has emerged from under more than 297–465 m of glacial ice during the last few thousand years. This paper presents data from a multidisciplinary investigation of the palaeolimnology of this lake through a study of a 3.8 m sediment core extracted at a depth of 93.4 m below the ice surface. The core was dated using a combination of radiocarbon, optically stimulated luminescence, and relative palaeomagnetic intensity dating incorporated into a chronological model. Stratigraphic analyses included magnetic susceptibility, clast provenance, organic content, carbonate composition, siliceous microfossils, isotope and biogeochemical markers. Based on the chronological model we provisionally assign a well-defined magnetic polarity reversal event at ca 165 cm in the lake sediments to the Mono Lake excursion (ca 30–34 ka), whilst OSL measurements suggest that material incorporated into the basal sediments might date to 93 ± 9 ka. Four stratigraphic zones (A–D) were identified in the sedimentological data. The chronological model suggests that zones A–C were deposited between Marine Isotope Stages 5–2 and zone A during Stage 1, the Holocene. The palaeolimnological record tracks changes in the subglacial depositional environment linked principally to changing glacier dynamics and mass transport and indirectly to climate change. The sediment composition in zones A–C consists of fine-grained sediments together with sands, gravels and small clasts. There is no evidence of overriding glaciers being in contact with the bed reworking the stratigraphy or removing this sediment. This suggests that the lake existed in a subglacial cavity beneath overriding LGM ice. In zone D there is a transition to finer grained sediments characteristic of lower energy delivery coupled with a minor increase in the organic content attributed either to increases in allochthonous organic material being delivered from the deglaciating catchment, a minor increase in within-lake production or to an analytical artefact associated with an increase in the clay fraction. Evidence of biological activity is sparse. Total organic carbon varies from 0.2 to 0.6%, and cannot be unequivocally linked to in situ biological activity as comparisons of δ13C and C/N values with local reference data suggest that much of it is derived from the incorporation of carbon in catchment soils and gravels and possibly old CO2 in meteoric ice. We use the data from this study to provide guidelines for the study of deep continental subglacial lakes including establishing sediment geochronologies, determining the extent to which subglacial sediments might provide a record of glaciological and environmental change and a brief review of methods to use in the search for life.  相似文献   

8.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

9.
The nature of the drainage system beneath ice sheets is crucial to their dynamic behaviour but remains problematic. An experimentally based theory of coupling between groundwater and major channel systems is applied to the esker systems in the area occupied the last ice sheet in Europe, which we regard as a fossil imprint of major longitudinal drainage channels. We conclude that the large-scale distribution and spacing of major eskers is consistent with the theory of groundwater control, in which esker spacing is partly controlled by the transmissivity of the bed.It is concluded that esker patterns reflect the large-scale organisation of the subglacial drainage pattern in which channel development is coupled to groundwater flow and to the ice sheet's dynamic regime. The theory is then used to deduce: basal meltwater recharge rates and their spatial variability from esker spacing in an area in which the ice sheet was actively streaming during its final retreat; patterns of palaeo-groundwater flow and head distribution; and the seasonally varying magnitude of discharge from stream tunnels at the retreating ice sheet margin. Major channel/esker systems appear to have been stable at least over several hundred of years during the retreat of the ice sheet, although major dynamic events are demonstrably associated with major shifts in the hydraulic regime.Modelling suggests: that glaciation can stimulate deep groundwater circulation cells that are spatially linked to channel locations, with groundwater flow predominantly transverse to ice flow; that the circulation pattern has the potential to create large-scale anomalies in groundwater chemistry; and that the spacing of channels will change through the glacial cycle, influencing water pressures in stream tunnels, subglacial hydraulic gradients and effective pressure. If the latter is reduced sufficiently, it could trigger enhanced bed deformation, thus coupling drainage to ice sheet movement. It suggests the possibility of distinctive phases of sediment deformation and drumlin mobilisation during a glacial cycle.  相似文献   

10.
《Quaternary Science Reviews》2007,26(5-6):627-643
Buried submarine landforms mapped on 3D reflection seismic data sets provide the first glacial geomorphic evidence for glacial occupation of the central North Sea by two palaeo-ice-streams, between 58–59°N and 0–1°E. Streamlined subglacial bedforms (mega-scale glacial lineations) and iceberg plough marks, within the top 80 m of the Quaternary sequence, record the presence and subsequent break-up of fast-flowing grounded ice sheets in the region during the late Pleistocene. The lengths of individual mega-scale glacial lineations vary from ∼5 to ∼20 km and the distance between lineations typically ranges from 100 to 1000 m. The lineations incise to a depth of 10–12 m, with trough widths of ∼100 m. The most extensive and best-preserved set of lineations, is attributed to the action of a late Weichselian ice stream which either drained the NE sector of the British–Irish ice sheet or was sourced from the SW within the Fennoscandian ice sheet. The 30–50 km wide palaeo ice-stream is imaged along its flow direction for 90 km, trending NW–SE. An older set of less well-preserved lineations is interpreted as an earlier Weichselian or Saalian ice-stream, and records ice flow in an SW–NE orientation. Cored sedimentary records, tied to 3D seismic observations, support grounded ice sheet coverage in the central North Sea during the last glaciation and indicate that ice flowed over a muddy substrate that is interpreted as a deformation till. The identification of a late Weichselian ice stream in the Witch Ground area of the North Sea basin provides independent geomorphic evidence in support of ice-sheet reconstructions that favour complete ice coverage of the North Sea between Scotland and Norway during the Last Glacial Maximum.  相似文献   

11.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

12.
We provide evidence for the subglacial to ice‐marginal successive deposition of the Lohtaja?Kivijärvi ice lobe margin esker influenced by the changes in the meltwater delivery and proglacial water depth within the Finnish Lake District lobe trunk during the last deglaciation in Finland. The study is mostly based on the sedimentological data from the 100 km long esker chain with 15 logged sites. The long breaks in the lobe margin esker and the re‐emerged deposition along the stable position of the subglacial meltwater route were related to the discontinuities and reappearances of the neighbouring eskers. This considerable variability in the meltwater discharge and debris transport under the described deglacial conditions cannot be explained by markedly decreased meltwater production due to palaeoclimatic factors or lack of debris within the trunk region. The primary control on the changes in meltwater availability and related esker deposition was thus due to the spatial and temporal changes in ice mass properties and shifting of the meltwater flow paths within the trunk. These changes were initiated by the topographically higher and partly supra‐aquatic Suomenselkä watershed area with subsequent deepening of the proglacial water during the deglaciation. The understanding of the long‐lived esker deposition along the former ice‐stream trunk margin adds to the evaluation of palaeoglaciological reconstructions and geomorphologically based spatial models for ice‐stream landscapes.  相似文献   

13.
Victoria Island lies at the north-western limit of the former North American (Laurentide) Ice Sheet in the Canadian Arctic Archipelago and displays numerous cross-cutting glacial lineations. Previous work suggests that several ice streams operated in this region during the last (Wisconsinan) glaciation and played a major role in ice sheet dynamics and the delivery of icebergs into the Arctic Ocean. This paper produces the first detailed synthesis of their behaviour from the Last Glacial Maximum through to deglaciation (~21–9.5 cal ka BP) based on new mapping and a previously published radiocarbon-constrained ice sheet margin chronology. Over 70 discrete ice flow events (flow-sets) are ‘fitted’ to the ice margin configuration to allow identification of several ice streams ranging in size from large and long-lived (thousands of years) to much smaller and short-lived (hundreds of years). The reconstruction depicts major ice streams in M'Clure Strait and Amundsen Gulf which underwent relatively rapid retreat from the continental shelf edge at some time between ~15.2 and 14.1 cal ka BP: a period which encompasses climatic warming and rapid sea level rise (meltwater pulse-1a). Following this, overall retreat was slower and the ice streams exhibited asynchronous behaviour. The Amundsen Gulf Ice Stream continued to operate during ice margin retreat, whereas the M'Clure Strait Ice Stream ceased operating and was replaced by an ice divide within ~1000 years. This ice divide was subsequently obliterated by another short-lived phase of ice streaming in M'Clintock Channel ~13 cal ka BP. The timing of this large ice discharge event coincides with the onset of the Younger Dryas. Subsequently, a minor ice divide developed once again in M'Clintock Channel, before final deglaciation of the island shortly after 9.5 cal ka BP. It is concluded that large ice streams at the NW margin of the Laurentide Ice Sheet, equivalent in size to the Hudson Strait Ice Stream, underwent major changes during deglaciation, resulting in punctuated delivery of icebergs into the Arctic Ocean. Published radiocarbon dates constrain this punctuated delivery, as far as is possible within the limits imposed by their precision, and we note their coincidence with pulses of meltwater delivery inferred from numerical modelling and ocean sediment cores.  相似文献   

14.
《Quaternary Science Reviews》2007,26(9-10):1204-1211
Moraines deposited by the Dundalk Bay ice lobe record two readvances of the Irish Ice Sheet into the northern Irish Sea Basin during the last deglaciation. These readvances overrode and incorporated fossiliferous marine muds from the floor of Dundalk Bay. AMS 14C dates from monospecific microfaunas obtained from these muds indicate that the earlier (Clogher Head) readvance occurred sometime between 15.0 and 14.2 14C ka BP, thus identifying a previously unrecognized ice-margin fluctuation in the Irish Sea Basin that is correlative with a readvance in northwest Ireland. The younger readvance occurred after 14.2 14C ka BP and is equivalent to the Killard Point readvance identified elsewhere in the Irish Sea Basin. These readvances occurred during the Oldest Dryas cold interval and bracket Heinrich event 1. Raised marine muds that were deposited between ice readvances require that a substantial ice sheet remained on Ireland throughout much of the last deglaciation, with attendant isostatic depression of at least 110 m.  相似文献   

15.
The seaboard of western Scotland is a classic fjord landscape formed by glaciation over at least the last 0.5 Ma. We examine the glacial geology preserved in the fjords (or sea lochs) of the Summer Isles region of NW Scotland using high-resolution seismic data, multibeam swath bathymetry, seabed sediment cores, digital terrain models, aerial photographs, and field investigations. Detailed analyses include seismic facies and lithofacies interpretations; sedimentological and palaeoenvironmental analyses; and radiocarbon dating of selected microfauna. Our results indicate that the Pleistocene sediments of the Summer Isles region, on- and offshore, can be subdivided into several lithostratigraphic formations on the basis of seismic character, geomorphology and sedimentology. These are: subglacial tills; ice-distal and glacimarine facies; ice-proximal and ice-contact facies; moraine assemblages; and Holocene basin fill. The submarine landscape is also notable for its large-scale mass-movement events – the result of glaciodynamic, paraglacial or seismotectonic processes. Radiocarbon dating of marine shells indicate that deglaciation of this part of NW Scotland was ongoing between 14 and 13 ka BP – during the Lateglacial Interstadial (Greenland Interstadial 1) – consistent with cosmogenic surface-exposure ages from previous studies. A sequence of numerous seafloor moraine ridges charts oscillatory retreat of the last ice sheet from a buoyant calving margin in The Minch to a firmly grounded margin amongst the Summer Isles in the early part of Lateglacial Interstadial (GI-1) (pre-14 ka BP). Subsequent, punctuated, frontal retreat of the ice mass occurred in the following ~1000 years, during which time ice-cap outlet glaciers became topographically confined and restricted to the fjords. A late-stage readvance of glaciers into the inner fjords occurred soon after 13 ka BP, which calls into question the accepted limits of ice extent during the Younger Dryas Stadial (Greenland Stadial 1). We examine the wider implications of our chronostratigraphic model, discussing the implications for British Ice Sheet deglaciation, Lateglacial climate change, and the style and rates of fjord sedimentation.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

17.
Glaciers erode bedrock but are also efficient conveyors of debris supplied during a cycle of glaciation by processes other than basal erosion. In this dual capacity as both an eroding and a transporting agent lies the ambiguity of ‘glacial erosion’ as a geomorphic process, with implications for methods of measuring the removal of rock mass by glaciers in the geological past, and for interpreting what exactly the consequences have been on topography and elevation change. A global review of ~400 Quaternary glacial denudation rates estimated from five different measurement techniques provides values ranging between 10?4 and 10 mm yr?1. We investigate the causes of such wide variability by examining the respective influences of environmental setting and methodological bias. A reference frame chosen for assessing these issues is the Massif du Carlit (Pyrenees, France), where a quantified mass balance of the well preserved glacial, periglacial and paraglacial deposits was made possible by detailed geomorphological mapping and terrestrial cosmogenic nuclide dating of extant erosional and depositional landform sequences. Resulting age brackets helped to define three main episodes of ice-cap growth and decline, each characterized by a volume of debris and a mappable source area. Erosion rates were expressed in two ways: (i) as spatially averaged denudation rates (D) during the successive stages of glacial advance to the line of maximum ice extent (MIE), post-MIE ice recession, and Lateglacial cirque readvance, respectively; and (ii) as cirque-wall recession rates (R) where moraine facies criteria indicated a supraglacial provenance of debris. Results indicate low erosion (D  0.05 mm yr?1) during the ice advance phase, probably because of thin or passive ice covering the low-gradient subglacial topography that occurs just above the late Pleistocene equilibrium line altitude (2.2–2.4 km). Erosion rates peaked (D  0.6 mm yr?1 and R  2.4–4.5 mm yr?1) during the main transition to ice-free conditions, when deglacial debuttressing promoted the rapid response of freshly exposed slope systems to new equilibrium conditions in the steep crest zone. Lateglacial D- and R-values declined to 0.2–0.3 mm yr?1, with indications of spatially variable R controlled by lithology. In this environment glaciers overall behaved more as conveyors of debris supplied by supraglacial rock exposures in the mountain crest zone than as powerful modifiers of subglacial topography. This explains the widespread preservation of deep, in situ preglacial weathering profiles on relict Cenozoic land surfaces in the deglacierized part of the Eastern Pyrenees. When plotted on the global data set analyzed and discussed in the review, the East Pyrenean erosion rates stand out as being amongst the lowest on record.  相似文献   

18.
Glacial deposits and landforms, interpreted from the continuous seismic reflection data, have been used to reconstruct the Late Weichselian ice-sheet dynamics and the sedimentary environments in the northeastern Baltic Sea. The bedrock geology and topography played an important role in the glacial dynamics and subglacial meltwater drainage in the area. Drumlins suggest a south-southeasterly flow direction of the last ice sheet on the Ordovician Plateau. Eskers demonstrate that subglacial meltwater flow was focused mostly within bedrock valleys. The eskers have locally been overlain by a thin layer of till. Thick proximal outwash deposits occupy elongated depressions in the substratum, which often occur along the sides of esker ridges. Ice-marginal grounding-line deposit in the southern part of the area has a continuation on the adjacent Island of Saaremaa. Therefore, we assume that its formation took place during Palivere Stadial of the last deglaciation, whereas the moraine bank extending southwestward from the Serve Peninsula is tentatively correlated with the Pandivere Stadial. The wedge-shaped ice-marginal grounding-line deposit was locally fed by subglacial meltwater streams during a standstill or slight readvance of the ice margin. The thickness of the glacier at the grounding-line was estimated to reach approximately 180 m. In the western part of the area, terrace-like morphology of the ice-marginal deposit and series of small retreat moraines 10–20 km north of it suggest stepwise retreat of the ice margin. Therefore, a rather thin and mobile ice stream was probably covering the northeastern Baltic Sea during the last deglaciation.  相似文献   

19.
The sensitivity of ice sheets to climate change influences the return of meltwater to the oceans. Here we track the Laurentide Ice Sheet along a ~400 km long transect spanning about 6000 yr of retreat during the major climate oscillations of the lateglacial. Thunder Bay, Ontario is near a major topographic drainage divide, thus terrestrial ablation processes are the primary forcers of ice margin recession in the study area. During deglaciation three major moraine sets were produced, and have been assigned minimum ages of 13.9 ± 0.2, 12.3 ± 0.2–12.1 ± 0.1, and 11.2 ± 0.2 cal ka BP from south to north. These define a slow retreat (~10–50 m/a) prior to major climate oscillations which was then followed by a factor of ~2 increase during the Bölling–Alleröd, and an additional increase during the early Holocene. When compared to retreat rates in other terrestrial settings of the ice sheet, nearly identical patterns emerge. However this becomes problematic because a key control on retreat rates is the surface slope of the ice sheet and this should vary considerably over areas of so-called hard and soft beds. Further these ice margin reconstructions would not allow meltwater sourced in the Hudson Basin to drain into the Atlantic basin until after Younger Dryas time.  相似文献   

20.
Many sites in Fennoscandia contain pre-Late Weichselian beds of organic matter, located mostly in the flanks of eskers. It is a matter of debate whether these fragmentary beds were deposited in situ, or whether they were deposited elsewhere and then picked up and moved by glacial ice. The till-mantled esker of Harrinkangas includes a shallow depression filled with sand and silt containing, for example, several tightly packed laminar sheets of brown moss (Bryales) remains. It is argued that these thin peat sheets were transported at the base of the ice sheet, or englacially, and were deposited together with the silt and sand on the side of a subglacial meltwater tunnel. Subglacial meltout till subsequently covered the flanks of the esker near the receding ice margin. Information about the depositional and climatic environments was obtained from biostratigraphic analysis of the organic matter. Pollen spectra for the peat represent an open birch forest close to the tundra zone. A thin diamicton beneath the peat contains charred pine wood, recording the former presence of pine forests in western Finland. The unhumified, extremely well-preserved peat evidently originated during the final phase of an ice-free period, most probably the end of the Eemian Interglaciation. It was redeposited in the esker by the last ice sheet. Reconstructions of the Pleistocene chronology and stratigraphy of central Fennoscandia that rely on such redeposited organic matter should be viewed with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号