首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oil seeps from the southern Gulf of Mexico can be regarded as natural laboratories where the effect of crude oil seepage on chemosynthesis‐based communities and carbonate precipitation can be studied. During R/V Meteor cruise 114 the seep sites UNAM (Universidad Nacional Autónoma de México) Ridge, Mictlan Knoll and Tsanyao Yang Knoll (Bay of Campeche, southern Gulf of Mexico) were investigated and sampled for authigenic carbonate deposits containing large amounts of liquid oil and solid asphalt. The δ13C values of individual carbonate phases including: (i) microcrystalline matrix aragonite and calcite; (ii) grey, cryptocrystalline to microcrystalline aragonite; and (iii) clear, fibrous aragonite cement, are between ?30‰ and ?20‰, agreeing with oil as the primary carbon source. Raman spectra reveal that residual heavy oils from all sites are immature and most likely originate from the same reservoir. Geochemical batch modelling using the software code PHREEQC demonstrates how sulphate‐driven oxidation of oil‐derived low‐molecular to high‐molecular weight hydrocarbons affects carbonate saturation state, and shows that the oxidation state of carbon in hydrocarbon compounds and oxidation rates of hydrocarbons control carbonate saturation and precipitation at oil seeps. Phase‐specific trace and rare earth element contents of microcrystalline aragonite and calcite, grey cryptocrystalline aragonite and clear aragonite were determined, revealing enrichment in light rare earth elements for grey aragonite. By comparing trace element patterns of carbonates with those of associated oils, it becomes apparent that liquid hydrocarbons constitute an additional source of trace metals to sedimentary pore waters. This work not only demonstrates that the microbial degradation of oil at seeps may result in the precipitation of carbonate minerals, it also elucidates that trace metal inventories of seep carbonates archive diagnostic elemental patterns, which can be assigned to the presence of heavy hydrocarbons in interstitial pore waters.  相似文献   

2.
The fluvial Triassic reservoir subarkoses and arkoses (2409·5–2519·45 m) of the El Borma oilfield, southern Tunisia, were subjected to cementation by haematite, anatase, infiltrated clays, kaolinite and K-feldspar at shallow burial depths from meteoric waters. Subsequently, basinal brines controlled the diagenetic evolution of the sandstones and resulted initially in the precipitation of quartz overgrowths, magnesian siderite, minor ferroan magnesite and anhydrite. The enrichment of siderite in 12C isotope (δ13CPDB= - 14·5 to - 9‰) results from derivation of carbon from the thermal decarboxylation of organic matter. During further burial, the precipitation of dickite and pervasive transformation of kaolinite into dickite occurred, followed by the formation of microcrystalline K-feldspar and quartz, chlorite and illite, prior to the emplacement of oil. Present day formation waters are Na-Ca-Cl brines evolved by the evaporation of seawater and water/mineral interaction and are in equilibrium with the deep burial (≤ 3·1 km) minerals. These waters are suggested to be derived from the underlying Silurian and Devonian dolomitic mudstones.  相似文献   

3.
天文事件与二叠纪末联合古陆解体   总被引:2,自引:0,他引:2       下载免费PDF全文
二叠纪末发生了全球规模的剧烈变化,这种变化表现为古地磁逆转、古气候改变、显生宙规模最大的海退、缺氧事件、火山活动、地球化学异常及地史上规模最大的生物集群灭绝。全球二叠纪/三叠纪界线附近陆续发现了陨星撞击抛射物(微球粒)和不同程度的Ir等地球化学异常,表明二叠纪末发生了陨星撞击地球的天文事件。联合古陆从三叠纪开始解体,联合古陆解体的过程实际上就是特提斯洋缩小直至消亡的过程,也就是特提斯洋周缘板块聚合的过程。陨星撞击点可能位于二叠纪末特提斯洋北部,最终导致了特提斯洋消亡及联合古陆解体。  相似文献   

4.
Recent advances in three-dimensional numerical simulations of mantle convection have aided in approximately reproducing continental movement since the Pangea breakup at 200 Ma. These have also led to a better understanding of the thermal and mechanical coupling between mantle convection and surface plate motion and predictions of the configuration of the next supercontinent. The simulations of mantle convection from 200 Ma to the present reveals that the development of large-scale cold mantle downwellings in the North Tethys Ocean at the earlier stage of the Pangea breakup triggered the northward movement of the Indian subcontinent. The model of high temperature anomaly region beneath Pangea resulting from the thermal insulation effect support the breakup of Pangea in the real Earth time scale, as also suggested in previous geological and geodynamic models. However, considering the low radioactive heat generation rate of the depleted upper mantle, the high temperature anomaly region might have been generated by upwelling plumes with contribution of deep subducted TTG(tonalite-trondhjemite-granite) materials enriched in radiogenic elements. Integrating the numerical results of mantle convection from 200 Ma to the present, and from the present to the future, it is considered that the mantle drag force acting on the base of continents may be comparable to the slab pull force, which implies that convection in the shallower part of the mantle is strongly coupled with surface plate motion.  相似文献   

5.
The closure of Palaeotethys that led to the collision of the Cimmerian blocks with the southern Eurasian margin causing the Eo-Cimmerian orogeny during the Early Mesozoic is still controversially discussed. The Triassic Nakhlak Group in Central Iran is a key sedimentary succession for better understanding the closure of Palaeotethys and the Eo-Cimmerian orogeny in the Middle East. The Nakhlak Group is composed of the Alam (Olenekian to Middle Anisian), Baqoroq (?Upper Anisian to Middle Ladinian) and Ashin (Upper Ladinian to ?Carnian) formations, which consist mainly of volcaniclastic sandstones, mixed siliciclastic conglomerates, and marine carbonates. Here we present for the first time detrital zircon UPb ages from the Nakhlak Group to unravel its provenance and constrain its palaeotectonic position within the Palaeotethyan realm. Most detrital zircons from the Nakhlak Group are euhedral and subhedral with Permian–Triassic ages (ca. 280–240 Ma) suggesting sediment supply from Permian–Triassic magmatic rocks of the Silk Road Arc. Minor zircon populations show pre-Permian Palaeozoic ages, with age peaks at ca. 320 Ma and 480 Ma, which are probably derived from the basement on which the magmatic arc developed. Neoproterozoic–latest Mesoproterozoic (ca. 550–1100 Ma) and Palaeoproterozoic (ca. 1800–2200 Ma) zircon grains are anhedral (rounded). The latter are prominent in the upper Baqoroq Formation (Middle Ladinian) suggesting recycling of older sedimentary rocks. Sandstone petrography points toward an additional metamorphic provenance for this formation. This short-lived provenance change can be explained by tectonic uplift in the source area that led to erosion of metamorphosed rocks with a northeast Gondwanan affinity. It clearly indicates that northeast Gondwana-derived continental fragments likely belonging to the Cimmerian blocks already arrived at the southern Eurasian margin in pre-Late Triassic time. Current palaeotectonic models of the closure of Palaeotethys and the Eo-Cimmerian orogeny in the Middle East during the Triassic may need to be revised.  相似文献   

6.
Contrasting modes of supercontinent formation and the conundrum of Pangea   总被引:3,自引:3,他引:0  
Repeated cycles of supercontinent amalgamation and dispersal have occurred since the Late Archean and have had a profound influence on the evolution of the Earth's crust, atmosphere, hydrosphere, and life. When a supercontinent breaks up, two geodynamically distinct tracts of oceanic lithosphere exist: relatively young interior ocean floor that develops between the dispersing continents, and relatively old exterior ocean floor, which surrounded the supercontinent before breakup. The geologic and Sm/Nd isotopic record suggests that supercontinents may form by two end-member mechanisms: introversion (e.g. Pangea), in which interior ocean floor is preferentially subducted, and extroversion (e.g. Pannotia), in which exterior ocean floor is preferentially subducted.The mechanisms responsible remain elusive. Top–down geodynamic models predict that supercontinents form by extroversion, explaining the formation of Pannotia in the latest Neoproterozoic, but not the formation of Pangea. Preliminary analysis indicates that the onset of subduction in the interior (Rheic) ocean in the early Paleozoic, which culminated in the amalgamation of Pangea, was coeval with a major change in the tectonic regime in the exterior (paleo-Pacific) ocean, suggesting a geodynamic linkage between these events. Sea level fall from the Late Ordovician to the Carboniferous suggests that the average elevation of the oceanic crust decreased in this time interval, implying that the average age of the oceanic lithosphere increased as the Rheic Ocean was contracting, and that subduction of relatively new Rheic Ocean lithosphere was favoured over the subduction of relatively old, paleo-Pacific lithosphere. A coeval increase in the rate of sea floor spreading is suggested by the relatively low initial 87Sr/86Sr in late Paleozoic ocean waters. We speculate that superplumes, perhaps driven by slab avalanche events, can occasionally overwhelm top–down geodynamics, imposing a geoid high over a pre-existing geoid low and causing the dispersing continents to reverse their directions to produce an introverted supercontinent.  相似文献   

7.
New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle–Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle–Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian–Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE–SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/39Ar analyses of muscovite from the earliest cleavage in the Las Minas unit yielded a plateau age of 347 ± 3 Ma and show low temperature ages of  260 Ma. Post-dating all of these structures and the Patlanoaya Group are NE-plunging, subvertical folds and kink bands. An E–W, vertical normal fault juxtaposes the low-grade rocks against the Anacahuite amphibolite that is cut by megacrystic granite sheets, both of which were deformed by two penetrative fabrics. Amphibole from this unit has yielded a 40Ar/39Ar plateau age of 299 ± 6 Ma, which records cooling through  490 °C and is probably related to a Permo-Carboniferous reheating event during exhumation. The extensional deformation is inferred to have started in the latest Devonian ( 360 Ma) during deposition of the basal Patlanoaya Group, lasting through the rapid exhumation of the Piaxtla Suite at  350–340 Ma synchronous with cleavage development in the Las Minas unit, deposition of the Patlanoaya Group with active fault-related exhumation suggested by Mississippian and Early Permian conglomerates ( 340 and 300 Ma, respectively), and continuing at least into the Middle Permian (≡ 260 Ma muscovite ages). The continuity of Mid-Continent Mississippian fauna from the USA to southern Mexico suggests that this extensional deformation occurred on the western margin of Pangea after closure of the Rheic Ocean.  相似文献   

8.
The Gangdese magmatic belt, located in the southern margin of the Lhasa terrane and carrying significant copper and polymetallic mineralization, preserves important information relating to the tectonics associated with Indian–Eurasian collision and the crustal growth of southern Tibet. Here we investigate the Quxu batholith in the central domain of the Gangdese magmatic belt and report the occurrence of hornblende gabbros for the first time. We present petrologic, zircon U–Pb–Hf isotopic and bulk-rock chemistry data on these rocks. The hornblende gabbros display sub-alkaline features, and correspond to tholeiite composition. They also show medium K calc-alkaline to low K affinity. The rocks show enrichment in LILEs and LREEs, but are depleted in HFSEs, indicating a subduction-related active continental margin setting for the magma genesis. Our computations show that the gabbroic pluton was emplaced in the middle-lower crustal depth of ca. 18 km. Zircons from the hornblende gabbros yield crystallization age of ca. 210 Ma, revealing a late Triassic magmatic event. Combined with available data from the Gangdese magmatic belt, our study suggests that the northward subduction of the Neo-Tethys oceanic crust beneath the southern margin of the Lhasa terrane might have been initiated not later than the Norian period of Triassic. Zircons from the hornblende gabbro show positive εHf(t) values of 9.56 to 14.75 (mean value 12.44), corresponding to single stage model ages (TDM1) in the range of 256 Ma to 459 Ma, attesting to crustal growth in the southern Lhasa terrane associated with the subduction of the Neo-Tethys oceanic crust.  相似文献   

9.
More than 50% of the Alps expose fragments of Palaeozoic basement which were assembled during the Alpine orogeny. Although the tectonic and metamorphic history of the basement units can be compared to that of the Variscan crust in the Alpine foreland, most of the basement pieces of the Alps do not represent the direct southern continuation of Variscan structural elements evident in the Massif Central, the Vosges–Black Forest or the Bohemian massif. The basement units of the Alps all originated at the Gondwana margin. They were derived from a Precambrian volcanic arc suture fringing the northern margin of Gondwana, from which they were rifted during the Cambrian–Ordovician and Silurian. A short-lived Ordovician orogenic event interrupted the general rifting tendency at the Gondwana active margin. After the Ordovician, the different blocks drifted from the Gondwana margin to their Pangea position, colliding either parallel to Armorica with Laurussia or with originally peri-Gondwanan blocks assembled presently in Armorica. From the Devonian onwards, many basement subunits underwent the complex evolution of apparently oblique collision and nappe stacking. Docking started in the External massifs, the Penninic and Lower and middle Austroalpine units in approximately Devonian/early Carboniferous times, followed by the Upper Austroalpine and the South Alpine domains, in the Visean and the Namurian times, respectively. Wrenching is probably the best mechanism to explain all syn and post-collisional phenomena since the Visean followed by post-orogenic collapse and extension. It explains the occurrence of strike-slip faults at different crustal levels, the formation of sedimentary troughs as well as the extrusion and intrusion of crustal and mantle-derived magmas, and allows for contemporaneous rapid uplift of lower crustal levels and their erosion. From the Stephanian onwards, all regions were deeply eroded by large river systems.  相似文献   

10.
《International Geology Review》2012,54(14):1685-1696
Understanding Pangea breakup requires a robust reconstruction, and this article focuses on the Middle America sector of the supercontinent. Although most Pangean reconstructions locate the Yucatan Block along the southern USA, the Chortis Block is generally placed off southern Mexico (Pacific model), undergoing sinistral relative motion during the Mesozoic and Cenozoic. However, the Pacific model is inconsistent with the absence of a Cenozoic fault linking the Cayman transforms and the Middle America Trench. We present an alternative Pangean reconstruction, where both the Yucatan and Chortis Blocks are placed in the future Gulf of Mexico, moving Mexico westwards along the Mojave–Sonora megashear to accommodate overlap with South America. Subsequent Mesozoic and Cenozoic evolution is inferred to have occurred in two stages: (i) Jurassic clockwise rotation along the Mojave–Sonora and West Florida megashears, followed by (ii) Cenozoic anticlockwise rotation along the Sierra Madre Oriental and East Yucatan megashears. The first stage is linked to the breakup of Pangea where the Gulf of Mexico formed as a pull-apart basin. The second stage is related to the evolution of the Caribbean where the Chortis and Yucatan Blocks rotated into the trailing side of the Caribbean Plate (pirate model). The new reconstruction is consistent with major parameters, such as (i) gravity, magnetic, and palaeomagnetic data; (ii) the westward continuation of the Cayman transform faults through the Chiapas foldbelt and along the N–S front of the Sierra Madre Oriental foldbelt; (iii) the 27–19 Ma removal of the southern Mexican forearc; (iv) offset of the Cretaceous volcanic arc (Guerrero-Suina); (v) the deflection of the Laramide orogen (Sierra Madre Oriental–Zongolica–Colon); and (vi) the continuity of Cretaceous platformal carbonates containing Caribbean fauna across Middle America. In this latter context, the Motagua high-pressure belt is interpreted as a Cretaceous extrusion zone into the upper plate above a subduction zone rather than as an oceanic suture.  相似文献   

11.
姜振宁 《地质与勘探》2023,59(2):337-352
磨拉石是造山带的重要组成部分,利用磨拉石来限定碰撞作用时限是造山带研究的一项重要内容。以内蒙古东北部科右中旗尖子山出露的一套杂色砾岩夹紫红色-灰紫色砂砾岩地层为研究对象,通过对其岩石组合、沉积构造、沉积时代的研究,认为其是一套产于陆内造山背景下前陆盆地的近源磨拉石,地层底部的近源崩塌堆积成因的花岗岩巨砾锆石LA-ICP-MS U-Pb年龄为250±2.9 Ma。结合区域上老龙头组碎屑锆石年龄及三叠纪同碰撞-后碰撞-陆内伸展阶段花岗岩时代的研究,认为该套磨拉石沉积于早三叠世,属下三叠统老龙头组。研究区早三叠世磨拉石的识别,明确了早三叠世存在陆内造山作用,为内蒙古东北部晚二叠世-早三叠世构造演化提供了新证据。  相似文献   

12.
The supercontinental status of the contemporary aggregation of continents called North Pangea is substantiated. This supercontinent comprises all continents with the probable exception of Antarctica. In addition to the spatial contiguity of continents, the supercontinent is characterized by the prevalence of the continental crust that combines North America and Eurasia, Eurasia and Africa, and Eurasia and Australia. Over the course of the 300–250-Ma evolution from Wegener’s Pangea to contemporary North Pangea, the aggregation of continents has not lost its supercontinental status, despite modification of the supercontinent shape and opening and closure of the newly formed Paleotethys, Tethys, Atlantic, and Indian oceans. Over the last 250–300 Ma, all movements of the lithospheric plates have most likely occurred within the Indo-Atlantic segment of the Earth, whereas the Pacific segment has remained oceanic. In short, the formation of the North Pangea supercontinent can be outlined in the following terms. The long and deep subduction of the lithospheric plates beneath Eurasia and North America gave rise to the stabilization of the continents and accumulation of huge bodies of the cold lithosphere commensurable in volume with the upper mantle at the deeper mantle levels. This brought about compensation ascent of hot mantle (mantle plumes) near the convergent plate boundaries and far from them. A special geodynamic setting develops beneath the supercontinent. Due to encircling subduction of the lithospheric plates and related squeezing of the hot mantle, an ascending flow, or plume (superplume) formed beneath the central part of the supercontinent. In our view, the African superplume broke up Wegener’s Pangea in the Atlantic region, caused the opening of the Atlantic and Indian oceans, and migrated to the Arctic Region 53 Ma ago.  相似文献   

13.
Sm-Nd ages for garnets in the three Precambrian exposures of eastern and southern Mexico demonstrate that they belong to the Grenville tectonothermal event. The Sm-Nd garnet ages of 0.95 Ga for the Oaxacan Complex and 0.90 Ga for the Huiznopala Gneiss, Molango and the Novillo Gneiss, Ciudad Victoria, are postdated 75 Ma by Rb-Sr ages on biotites. Both sets of data document a cooling history following Grenville metamorphism at or before 1.0 Ga ago. Our garnet data are consistent with a blocking temperature for Sm-Nd in that mineral around 600° C suggested by Humphries and Cliff (1982).The three Precambrian occurrences have Nd chemical ages of separation from depleted mantle (TDM) grouped in the range 1.40–1.60 Ga. This may result from derivation of the rocks from actual crustal protoliths which had been separated from the mantle 0.5 Ga before the Grenville Orogeny. It is much more likely, however, that crustal materials of 1.7 Ga or older age were mixed with mantle-derived products during Grenville events to produce intermediate TDM ages and Nd values around zero 1.0 Ga ago.  相似文献   

14.
Authigenic K‐feldspar was investigated in two Albian to Turonian sections in Israel using K‐Ar and Ar‐Ar dating, X‐ray diffraction, scanning electron microscopy and chemical analysis. Both sections comprise a similar succession of shallow‐marine limestones, dolomites and marls, with some sandstone and shale beds of continental origin. The HCl‐insoluble residue fraction of the studied samples consists of clays, quartz, feldspars, goethite and trace amounts of heavy minerals. Most of the insoluble residues have a relatively high K‐feldspar content that has an adularia habit and is concentrated in the 4–7 µm size fraction. The authigenic origin of the K‐feldspar in the fine silt fraction is indicated by its high content relative to quartz, the uniform and idiomorphic shape of the crystals and its limited size range. Of the fine silt (4–7 or 4–10 µm) separates, 40% have ages that are similar to stratigraphic ages within the analytical and biostratigraphic errors. Ar‐Ar dating of a fine silt fraction with 94% K‐feldspar (4–10 µm, sample GYP 7) yields a plateau age identical to the total gas age and similar to the stratigraphic age. These results indicate that the K‐Ar age is not a mixture between detrital and late diagenetic K‐feldspar ages, but is rather an age of formation within a few million years after deposition. It is suggested that the early formation of the K‐feldspar was associated with dolomitization and was induced by residual brines as part of a reflux process.  相似文献   

15.
Analyses of Lower Permian or older basalts and associated dykes of the Juchatengo sequence indicate that they are rift tholeiites that formed in a continental rift or back-arc tectonic setting. Age constraints include a Middle Permian fossil recovered from the tectonically overlying sediments and a cross-cutting, post-tectonic pluton dated by K/Ar on hornblende at 282±6 Ma. A location adjacent to the Oaxacan Complex or other old continental crust is suggested by (1) an Ndi isotopic value of −8.95 and a TDM age of 1487 Ma in the overlying sediments, which are similar to the Oaxacan Complex; (2) enrichment of incompatible elements in the lavas, suggesting old crustal contamination; and (3) the presence of Permian–Triassic calc-alkaline plutons that stitch the Juchatengo–Oaxaca boundary. The possible tectonic models depend on the age of the Juchatengo basalts, which requires future geochronological work. If the Juchatengo basalts are Permo-Carboniferous, they could have formed near the eastern edge of a back-arc basin: the contemporaneous arc would have rifted away to the west. Eastward migration of the arc magmatism indicated by the Permian–Triassic calc-alkaline plutonism may reflect shallowing of the dip of the subduction zone, which probably also produced the deformation of the Juchatengo sequence.  相似文献   

16.
In this report, we analyze the angiosperm fossil record (micro- and megafossil) from the central and southern basins of Argentina, southern South America, deposited between the late Barremian (128.3 Ma) to the end of the Coniacian (85.8 Ma). Based on this analysis, three major stages in the evolution of the angiosperms in the southernmost region of South America are established as follows: the late Barremian–Aptian, the latest Aptian-earliest Albian, and the middle Albian- Coniacian. The comparison between our fossil data set and those from Australia, North America, Asia and Europe suggest that the evolution and diversification of the angiosperms at mid and high latitudes in both hemispheres occurred roughly synchronously.  相似文献   

17.
《International Geology Review》2012,54(10):1189-1206
ABSTRACT

Volcaniclastic units are exposed at the base of the Puerto Blanco Formation in the Caborca region, northwestern Mexico. The lower unit reveals the presence of Early Cambrian mafic volcanism in this region. It consists of a volcano-sedimentary sequence represented by tuffaceous conglomerates, agglomerates, lapillistones, tuffs, and altered mafic volcanic flows. Petrographic analysis classified the volcanic clasts as albite-sphene-calcite-actinolite granofels, with a moderate to intense hydrothermal alteration, precisely characterized by EPMA analysis. Albite-actinolite geothermometry indicates temperatures from 400 to 500°C, suggesting metamorphic conditions in the upper temperature greenschist facies. Geochemistry analysis shows a high TiO2 basic–ultrabasic volcanism that originated the volcanic clasts. Rock protoliths were studied using immobile trace elements, which classified them as OIB-type alkaline basalts with the characteristic spider hump-shaped pattern, situated in an anorogenic intracontinental tectonic setting with enriched mantle signatures. 40Ar/39Ar geochronology shows metamorphic ages of 52.58 ± 2.0 and 91.67 ± 0.55 Ma, consistent with the emplacement of Laramidic granitoids identified in the region. Possible correlations of this alkaline volcanism include the Southern Oklahoma Aulacogen and the late stages of the rifting of north western Laurentia represented in western United States.  相似文献   

18.
Apatite fission‐track analyses on samples from eastern Sardinia document a complex tectonic history, whose reconstruction is problematic because of the reactivation of faults and structures at different times from Jurassic to Miocene. The oldest ages (150–154 Ma) have been detected on the southern margin of the Gulf of Orosei and are related to the extensional tectonics that characterize the European passive margin during Early and Middle Jurassic times. Thermal modelling of these data allows reconstruction of the burial history of the Mesozoic basin and estimation of a sedimentary thickness of 2000 m. Part of these sediments was eroded during the following uplift, documented by mid‐Cretaceous fission‐track ages. A further exhumation episode of Eocene age has been revealed by fission‐track data on granite samples, and has been inferred to be related to the Alpine orogenic phase. This tectonic episode caused the exhumation of crustal blocks bound by faults that were finally reactivated during the Late Oligocene–Early Miocene.  相似文献   

19.
(U–Th)/He and fission-track analyses of apatite along deep-seated tunnels crossing high-relief mountain ranges offer the opportunity to investigate climate-tectonic forcing on topographic evolution. In this study, the thermochronologic analysis along the Simplon tunnel (western-central Alps; Italy and Switzerland) constrains in detail the mechanisms controlling the topographic evolution of the Simplon Massif. Cooling rates vary from about 10°C/Ma at about 10 Ma to about 35°C/Ma in the last 3 Ma. Such increase in cooling rates corresponds to the inception of glacial cycles in the northern hemisphere. Age patterns show correlation with faults distribution until 2 Ma, suggesting that tectonics-controlled rocks exhumed up to that age. After 2 Ma thermo-chronometric data show that the Simplon area has experienced primarily erosional exhumation. All age patterns provided are not affected by topographic effects, thus indicating that present-day topography has been carved in the last 2 Ma, most likely controlled by glacial erosion.  相似文献   

20.
K. Priestley 《Lithos》1999,48(1-4):45-56
The velocity model for southern Africa of Qiu et al. [Qiu, X., Priestley, K., McKenzie, D., 1996. Average lithospheric structure of southern Africa. Geophys. J. Int. 127, 563–587] is revised so as to satisfy both the regional seismic waveform data and the fundamental mode Rayleigh wave phase velocity data for the region. The revised S-wave model is similar to the original model of Qiu et al. except that the high velocity, upper mantle lid extends to 160 km depth in the revised model rather than to 120 km in the original model. Sensitivity tests of the regional seismic data show that the minimum velocity in the S-wave low velocity zone can be as high as 4.45 km s−1 compared to 4.32 km s−1 in the Qiu et al. model. The vertical S-wave travel time for the revised south African model is compared with the vertical S-wave travel times for the global tomographic models S12WM13 and S16B30, and they are found to be similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号