首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small faults formed as deformation bands in sandstone   总被引:13,自引:0,他引:13  
Small faults with displacements of a few millimeters or centimeters are abundant in the Entrada and Navajo Sandstones, in the San Rafael Desert, Utah, where they are important primary structures, preceding the development of large faults with displacements of several meters or tens of meters. The small faults contain no surfaces of discontinuity, rather they occur asdeformation bands about one millimeter and tens or hundreds of meters long, and across which the displacements are distributed. Two zones with different modes of deformation can be distinguished within a deformation band: an outer zone where the matrix, including pores and matrix material, deforms; and an inner zone, about 0.5 mm thick, where the sand grains fracture and further consolidation takes place. Fracturing of the grains is controlled by contact geometry; the grains tend to split into subgrains along lines connecting contact points between the grains. Then the angular subgrains, which are readily fractured, are further granulated and mixed with the matrix. The final product is the deformation band, with much smaller grain size, poorer sorting, and lower porosity than the original parent sandstone. The sandstone on either side of a deformation band is almost undisturbed-fractures are rare there — so that deformation is highly localized within the band. The material within a deformation band apparently strain hardens as a result of the deformation; perhaps this is why the shear displacement across a deformation band is at most a few centimeters.  相似文献   

2.
Ground penetrating radar (GPR) was used in a programme of geological and hydrogeological investigations into the Quaternary of west Cumbria, UK. The investigations were part of an extensive programme to determine the suitability of the area for a deep radioactive waste repository. The hydrogeological characteristics of the drift deposits are important since they affect both recharge and discharge. The glacially derived Quaternary sediments include a variety of deformation structures related to their mode of deposition and subsequent modification by glacial and periglacial processes. These deformation structures range from variable scale thrusts (centimeter to tens of meter displacement due to proglacial thrusting) to small to medium scale faults, folds and collapse structures which are early or syn-sedimentary adjustments. From the GPR data a number of dipping reflectors, having dip angles in the range of 8–23°, were interpreted as thrust planes and related faults and folds have been clearly observed. Inwardly dipping reflectors, having a maximum dip angle of 36°, creating a characteristic `V' shaped anomaly, were also observed and interpreted to be linear collapse structures where glacitectonically emplaced slices of ice melted out causing sediments to slump. Lateral continuations, up to 90 m, of GPR-interpreted dislocations were mapped between survey lines, suggesting that such features could be laterally continuous on the scale of hundreds of metres.  相似文献   

3.

苏门答腊地区发育多条左旋走滑性质断层,地震活动活跃.2006年3月2日该区西南海域发生了MS7.8大地震.大地震的发生常常会引发区域位移场和应力场及周围断层应力状态发生变化.本文建立全球PREM有限元地球模型,据已有的断层滑动模型计算了此次苏门答腊地震引发的同震位移和应力及库仑应力变化,并进一步讨论了此次地震对周围断层的影响以及区域构造应力场对库仑应力变化计算的影响.初步结果表明此次苏门答腊MS7.8地震造成较大的南北向水平位移且集中在探测者破裂区(Investigator Fracture Zone),最大水平位移量约6.74 m,断层倾角接近垂直,下盘向北运动而上盘向南,进一步表明MS7.8地震为典型的左旋走滑为主的地震,发生海啸的可能性较低;库仑应力变化达MPa量级的区域集中在震中,但近场大部分余震分布在库仑应力减小区域,有效摩擦系数变化和区域构造应力场的耦合作用可能是其原因;利用改进的库仑应力变化计算方法和最优破裂方向计算得出的结果显示库仑应力触发理论可较好地解释余震分布.

  相似文献   

4.
We investigate the late Quaternary active deformation along the Jordan Valley segment of the left-lateral Dead Sea Fault and provide new insights on the behaviour of major continental faults. The 110-km-long fault segment shows systematic offsets of drainage systems surveyed at three sites along its southern section. The isotopic dating of six paleoclimatic events yields a precise chronology for the onset of six generations of gully incisions at 47.5 ka BP, 37.5 ka BP, 13 ka BP, 9 ka BP, 7 ka BP, and 5 ka BP. Additionally, detailed mapping and reconstructions provide cumulative displacements for 20 dated incisions along the fault trace. The individual amounts of cumulative slip consistently fall into six distinct classes. This yields: i) an average constant slip rate of 4.7 to 5.1 mm/yr for the last 47.5 kyr and ii) a variable slip rate ranging from 3.5 mm/yr to 11 mm/yr over 2-kyr- to 24-kyr-long intervals. Taking into account that the last large earthquake occurred in AD 1033, we infer 3.5 to 5 m of present-day slip deficit which corresponds to a Mw  7.4 earthquake along the Jordan Valley fault segment. The timing of cumulative offsets reveals slip rate variations critical to our understanding of the slip deficit and seismic cycle along major continental faults.  相似文献   

5.
Structure and deformational character of strike-slip fault zones   总被引:5,自引:0,他引:5  
Strike-slip fault zones observed either in the field or in model experiments generally consist of several subparallel faults which make these zones complicated in geometry and kinematics. The geometry of a strike-slip fault or shear zone is dependent on arrangement (pinnate or en echelon), on step (left step or right step), and on the rank )smaller faults within larger faults) of the subparallel fault. The relations and interactions of these three factors create a variety of dynamic circumstances and tectonic settings within the strike-slip fault zones. These include pull-aparts in the release area between subparallel faults, push-ups in the jogs where the subparallel faults overlap, and pivotal movements, or rotation, of single faults along the whole fault zone. Each kind of tectonic setting is in itself characteristic, each setting consists of many subtypes, which are controlled chiefly by the geometric parameters of the subparallel faults. One of the most important phenomena revealed in the field work is two different kinds of evolution of strike-slip fault zones: one is the evolution of a zone with a tensile component, which is related to the growth of rock bridges, and the other, of one with a compressional component, which develops by the destruction of rock bridges. In this paper we discuss, on the basis of recent research on four strike-slip fault zones in China, the essential characteristics of strike-slip faults and the possible causes of the observed structural phenomena. Attention is focussed on the deformation, development, and distribution of horizontal displacements within strike-slip fault zones.  相似文献   

6.
2008年汶川地震近断裂区域变形场的空间分布   总被引:2,自引:2,他引:0       下载免费PDF全文
应用Yoshimitsu Okada及Steketee静态断裂位错模型及目前汶川地震研究成果,理论上反演龙门山近断裂区域在汶川地震中从震源深处至地表的变形(应变)场分布.通过矢量合成及坐标变换方法将Yoshimitsu Okada单一静态断裂位错模型应用于龙门山断裂带错裂研究中,重点研究汶川地震中因龙门山中央主断裂中、北段和山前断裂中段共同错动形成的应变场.模拟揭示了应变场平面和垂直分量的空间分布特征.研究发现:应变场垂直分量的幅值在震源深处大于地表,但在地表分布范围较大;应变场沿断裂走向分量的幅值和影响范围由震源深度至地表均逐渐增加;应变场垂直于断裂走向分量的变化情况类似于垂直向应变场;震源深度附近的大变形可能为龙门山断裂在地震中强烈挤压形成的塑性变形.研究表明从震源至地表,所有应变场分量从断裂两侧附近位置至远离断裂,幅值均迅速衰减;其中地表部分的最大变形与现有计算成果近似,变形场的变化特征与地表科考近似,断裂两盘变形方向与震后InSAR资料揭示的情况一致.  相似文献   

7.
Three forms of fault are recognized in Entrada and Navajo Sandstones in the San Rafael Desert, southeastern Utah; deformation bands, zones of deformation bands, and slip surfaces. Small faults occur asdeformation bands, about one millimeter thick, in which pores collapse and sand grains fracture, and along which there are shear displacements on the order of a few millimeters or centimeters. Two or more deformation bands adjacent to each other, which share the same average strike and dip, form azone of deformation bands. A zone becomes thicker by addition of new bands, side by side. Displacement across a zone is the sum of displacements on each individual band. The thickest zones are about 0.5 m and total displacement across a thick zone rarely exceeds 30 cm. Finally,slip surfaces, which are through-going surfaces of discontinuity in displacement, form at either edge of zones of highly concentrated deformation bands. In contrast with individual deformation bands and zones of deformation bands, slip surfaces accommodate large displacements, on the order of several meters in the San Rafael Desert.The sequence of development is from individual deformation bands, to zones, to slip surfaces, and each type of faulting apparently is controlled by somewhat different processes. The formation of zones apparently involves strain hardening, whereas the formation of slip surfaces probably involves strain softening of crushed sandstone.  相似文献   

8.
Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.  相似文献   

9.
In the interior of the Tibetan Plateau, the active tectonics are primarily marked by conjugate strike slip faults and north-trending rifts, which represent the E-W extension since late Cenozoic of the plateau. The conjugate faults are mainly composed of NE-trending left-lateral strike-slip faults in Qiangtang terrane and NW-trending right-lateral strike-slip faults in Lhasa terrane. While, the rifts mainly strike N, NNW and NNE within southern Tibet. However, it is still a debate on the deformational style and specific adjustment mechanism of E-W extension. One of key reasons causing this debate is the lack of detailed investigation of these active faults, especially within the northwestern plateau. Recently, we found a 20km long, NNW-trending active fault at Bero Zeco in northwestern Tibet. This fault is presented as fault sag ponds, channel offsets and fault scarps. Displacement of channels and geomorphic features suggested that the Bero Zeco Fault(BZF)is a dextral strike-slip fault with a small amount of normal slip component, which may result from the E-W extensional deformation in the interior of Tibet. BZF strikes N330°~340°W, as shown on the satellite image. The main Quaternary strata in the studied area are two stages alluvial fans around the Bero Zeco. From the satellite images, the old alluvial fans were cut by the lake shoreline leaving many of lake terraces. And the young fans cut across the lake terraces and the old fans. By contrasting to the "Paleo-Qiangtang Huge Lake" since late Quaternary, these old alluvial fans could be late Pleistocene with age ranging from 40ka to 50ka. And the young fans could be Holocene. The sag ponds along the BZF are distributed in the late Pleistocene alluvial fans. Also, the BZF displaced the late Pleistocene fans without traces within Holocene fans, suggesting that the BZF is a late Pleistocene active fault. The fault scarps are gentler with the slope angle of around 10° and the vertical offset is about 2m by field measurement. Reconstruction of the offset of channels suggested that the accumulated dextral offset could be about 44m on the late Pleistocene alluvial fans. Therefore, we infer that the dextral slip-rate could be around 1mm/a showing a low-rate deformation characteristic. The angle between the strike of BZF and principal compressive stress axis(σ1)is around 30°, which is significantly different to the other faults within the conjugate strike-slip fault zones that is 60°~75°. Now, the deformation mechanisms on these conjugate faults are mainly proposed in the studies of obtuse angle between the faults and σ1, which is likely not applicable for the BZF. We infer that the BZF could be the northward prolongation of the north-trending rifts based on the geometry. This difference suggests that the conjugate strike-slip faults may be formed by two different groups:one is obtuse angle, which is related to block extrusion or shear zones in Lhasa and Qiangtang terranes possibly; the other is acute angle, which may represent the characteristics of new-born fractures. And more studies are needed on their deformation mechanisms.  相似文献   

10.
Seismogeological investigations conducted in the Erzin-Agar-Dag fault zone (the Great Lakes segment) revealed traces of paleoseismogenic deformation. A detailed on-land investigation of the Tatur-Tolga and the Hairakan paleoseismic dislocations (PSD) found a dominant left lateral type of movement. The amplitudes of one-act displacements on the faults vary between 2–3 and 6–7 m (horizontal) and within 1.5–2 m (vertical). Along with the parameters of one-act horizontal movements of a few meters, we found an accumulated amplitude of strike-slip movement of a few tens to hundreds of meters. Based on the parameters of seismotectonic deformations, the magnitudes of the respective paleoearthquakes are inferred to have been 6.6 to 7.9.  相似文献   

11.
The 160 km long Sudetic Marginal Fault (SMF) of Middle Silesia, southwestern Poland, is a main Alpine fault oriented NW–SE. This paper provides evidence of possible neotectonic activity in front of the SMF. The data are based on three exposures in the Roztoka–Mokrzeszow Graben near the city of Swidnica. Morphotectonic evidence in front of the SMF is also examined. Two sets of extensional deformation features are exposed and analysed. The main one includes gently inclined normal faults and flexures, with displacements in the bedrock of at least several metres. Based on the Quaternary stratigraphy of the region, the age of deformation is most probably Lower Saalian (Upper Pleistocene). The trigger for the deformation was probably the re-reactivation of the SMF and other faults due to the advance of the Lower Saalian Scandinavian ice-sheet into the Sudetic Mountains. The secondary deformation system includes sub-vertical, often conjugate faults with displacements up to 0·5 m superimposed on former structures. Its dominant normal faulting mode suggests an extensional stress regime that apparently coincides with the post-glacial glacioisostatic rebound. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Based on field observations and rheology analysis, we perform one analogue experiment and remold the 3D structural frame of Tongling deposit concentrating area firstly. Then we disassemble and dialyze the 3D structures of the model using the methods of "slicing" and "stripping". A series of sliced planes vertical to the fold hinges show similar landscapes of that in the drill hole profiles. Meanwhile, layer stripping analysis indicates that the deformation features of each layer in the model are qualitatively analogical to those obtained from field observations.Through contrasting the 3D structure between the experimental model and the field phenomena,we verify the following 3D deformation features of the caprock in this area: (1) the Tongling area mainly consists of three series of NE S-typed fold groups; (2) in the uniform stress field, the incoherent folds universally develop in different positions, along different axes as well as in different strata; (3) the faults propagate upward which are mostly inter-bedded detachment faults,while the fold amplitudes decrease while going deeper; and (4) the folds and cleavages are highly developed in the Silurian System indicating that the deformation effect of the Indosinian-Yanshanian structural layer terminates at this layer, which suggests that the Silurian System is the crucial layer for the inversion between brittle and plastic deformation domains and the underlying strata are subject to the control of another deformation system with distinct properties.  相似文献   

14.
~~Experimental remolding on the caprock’s 3D strain field of the Indosinian-Yanshanian epoch in Tongling deposit concentrating area1.Chang,Y.F.,Liu,X.P.,Wu,Y.C,The Cu,Fe Metallogenic Belt in the Middle-Lower Reaches of Yangtze River(in Chinese with English abstract),Beijing:Geological Publishing House,1991,1-379. 2.Yin,H.F.,Wu,S.B.,Du,Y.S.,South China is the part of multi-islands and multi-oceans system of Tethys,Earth Sciences(in Chinese),1999,24(1):1-12. 3.Wu,G G,Zha…  相似文献   

15.
The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake faults. Dislocation theory in an elastic half space indicates that if a seismic rupture directly runs up to the ground surface, there exist zero points of horizontal strain in the surface deformation, which correspond to the rupture depths, except for pure strike-slip faults. In this study, we use numerical simulations to investigate the possibility of inferring rupture depths from zero-strain points for cases of buried faults and heterogeneous media. The results show that the correspondence of zero-strain points to the rupture depths can be influenced by the heterogeneity of the underground media and the stress field. For buried faults, the correspondence relationship is approximately valid when the fault depth is <1 km. In addition, the range of earthquake fault dip angles can be estimated by horizontal displacements on the ground. We also study how to determine the rupture depths of faults from InSAR data after large earthquakes, and successfully apply the method to the 2008 Wenchuan earthquake. The method proposed here, which determines the parameters of fault geometry according to surface deformation, is simple and easy to perform. With independent of aftershocks, it can provide valuable constraints to kinematic inversions.  相似文献   

16.
It is crucial to reveal the surface traces and activity of active faults by obtaining high-precision microtopography and three-dimensional shallow geometry. However, limited by the traditional geological investigation methods in the field and geological condition factors, the measurement method on microtopography and shallow geometry of active fault is badly insufficient. In this study, the TLS and GPR are firstly used comprehensively to delineate the microtopography and shallow geometry of the normal fault scarp on the north margin of Maoyaba Basin in Litang. Firstly, the vertical displacements of two landforms produced by the latest two periods of normal faulting and the two-dimensional GPR profiles are obtained separately. Secondly, the three-dimensional measurement method of active fault based on TLS and GPR is preliminarily established. On this basis, three-dimensional model of fault scarp and three-dimensional images of subsurface geometry are also obtained. These data all reveal a graben structure at normal fault scarps. Thirdly, the fusion and interpretation of three-dimensional data from the surface and subsurface are realized. The study results show:1)the vertical displacements of the T1 and T2 terraces by the normal fault movement is 1.4m and 5.7m, the GPR profile shows a typical fault structure and indicates the existence of small graben structure with a maximum width of about 40m in the shallow layer, which further proves that it is a normal fault. 2)the shallow geometry of the normal fault scarp can be more graphically displayed by the three-dimensional radar images, and it also makes the geometry structure of the fault more comprehensive. The precise location and strike of faults F1 and F2 on the horizontal surface are also determined in the three-dimensional radar images, which further proves the existence of small graben structure, indicating the extensional deformation characteristics in the subsurface of the fault scarps. Furthermore, the distribution of small graben structure on the surface and subsurface is defined more precisely. 3)the integrated display of microgeomorphology and shallow geometry of normal fault scarp is realized based on the three-dimensional point cloud and GPR data. The fusion of the point cloud and GPR data has obvious advantages, for the spatial structure, morphological and spectral features from the point cloud can improve the recognition and interpretation accuracy of GPR images. The interpreted results of the GPR profiles could minimize the transformation of the surface topography by the external environment at the most extent, restore the original geomorphology, relocate the position and trend of faults on the surface and constrain the width of deformation zones under the surface, the geological structure, and the fault dislocation, etc. In a word, the TLS and GPR can quickly and efficiently provide the spatial data with multi-level and multi-visual for non-destructive inspection of the microgeomorphology and shallow structure for the active fault in a wide range, and for the detection of active fault in the complex geological environments, and it is helpful to improve the accuracy and understanding of the investigation and research on microtopography and shallow geometry of active faults. What's more, it also offers important data and method for more comprehensive identification and understanding of the distribution, deformation features, the behaviors of active faults and multi-period paleoseismicity. Therefore, to continuously explore and improve this method will significantly enhance and expand the practicability and application prospects of the method in the quantitative and elaborate studies of active faults.  相似文献   

17.
Limit equilibrium analyses were applied to the 1980 Mount St. Helens and 1956 Bezymianny failures in order to examine the influence on stability of structural deformation produced by cryptodome emplacement. Weakening structures associated with the cryptodome include outward-dipping normal faults bounding a summit graben and a flat shear zone at the base of the bulged flank generated by lateral push of the magma. Together with the head of the magmatic body itself, these structures serve directly to localize failure along a critical surface with low stability deep within the interior of the edifice. This critical surface, with the safety coefficient reduced by 25-30%, is then very sensitive to stability condition variation, in particular to the pore-pressure ratio (ru) and seismicity coefficient (n). For ru=0.3, or n=0.2, the deep surface suffers catastrophic failure, removing a large volume of the edifice flank. In the case of Mount St. Helens, failure occurred within a material with angle of friction ~40°, cohesion in the range 105-106 Pa, and probably significant water pore pressure. On 18 May 1980, detachment of slide block I occurred along a newly formed rupture surface passing through the crest of the bulge. Although sliding of block I may have been helped by the basal shear zone, significant pore pressure and a triggering earthquake were required (ru=0.3 and n=0.2). Detachment of the second block was guided by the summit normal fault, the front of the cryptodome, and the basal shear zone. This occurred along a deep critical surface, which was on the verge of failure even before the 18 May 1980 earthquake. The stability of equivalent surfaces at Bezymianny Volcano appears significantly higher. Thus, although magma had already reached the surface, weaker materials, or higher pore pressure and/or seismic conditions were probably required to reach the rupture threshold. From our analysis, we find that deep-seated sector collapses formed by removing the edifice summit cannot generally result from a single slide. Cryptodome-induced deformation does, however, provide a deep potential slip surface. As previously thought, it may assist deep-seated sector collapse because it favors multiple retrogressive slides. This leads to explosive depressurization of the magmatic and hydrothermal systems, which undermines the edifice summit and produces secondary collapses and explosive blasts.  相似文献   

18.

大地震的发生往往会引起周围区域形变场和应力场变化,且对临近断层上的应力状态也有影响.2001年11月4日,昆仑山口西发生了半个世纪以来中国最大的MS8.1级地震.本文基于已有的滑动模型,建立了三维含地形高程的横向不均匀性椭球型地球有限元模型,采用等效体力方法,分析了此次MS8.1地震产生的全球同震位移和应力场变化.与解析方法相比,该模型考虑了地形、Moho面起伏和地球介质横向不均匀性;与一般的有限元数值模拟相比,该模型考虑了地球曲率和椭率,合理地规避了有限块体模型假定边界位移为零所引入的误差.计算得出同震位移与GPS观测数据可以很好地吻合.据库仑破裂应力准则和震源参数,计算得出昆仑山口西MS8.1地震的发生造成了汶川、芦山、改则和当雄地震的发震断层上库仑应力增加,对这些地震的发生起促进作用;而造成玉树和德令哈地震发震断层上的库仑应力变化为负值,在一定程度上抑制了这些断层的地震活动性.此外,计算结果显示地球地形高程、介质非均匀性和椭率对昆仑山口西MS8.1地震同震变化计算有一定的影响,其中地形和椭率造成的同震位移场相对误差约10%.

  相似文献   

19.
The Guadalentín Depression, located in SE Spain (Murcia Region), is bounded by two of the main NE-SW master faults of the Eastern Betics Cordilleras: The Lorca-Alhama and the Palomares left-lateral strike-slip faults. Available earthquake data indicate that, in the last 600 years, some sectors of the Lorca-Alhama Fault and the entire sector of the Palomares Fault have not been associated with significant historical seismicity. However, they show a wide range of diagnostic features of earthquake surface displacements on late Pleistocene and Holocene alluvial and colluvial surfaces. Aside from the left-lateral offsets recorded along 045–050 ° master fault strands of the Lorca-Alhama Fault, major paleoseismic surface displacements show different kinematics in relation to the broad orientation of the fault strands: (1) vertical normal displacements along 010–020 ° trending faults mainly preserved as degraded fault scarps of 2.5-1.8 m high (Aljibejo site); and (2) vertical reverse displacements, with average offsets of 0.2 – 1 m, along 065–080 ° subsidiary faults. In this last group, the younger one (Carraclaca Baths site) remains as a fault scarp of 0.8 m height affecting a cascade tufa which was active until the Spanish Roman Period (2nd Century B.C. to 6th Century A.D.). In other cases, reverse offsets resulted in smaller displacements (0.26 m) of paleosols, but show a recurrent behaviour (La Escarihuela site). The strongest earthquakes recorded in the study area did not exceed more than Mb 4.5 or MSK Intensity VIII (historical) with no evidence of coseismic rupture. Therefore, the preliminary data presented here seem to indicate that the paleoseismic activity on both faults is capable of producing coseismic surface displacements, probably reaching magnitudes of at least 6.5. These data show that paleoseismic studies based on geomorphological analyses are a useful tool in the assessment of the relative degree of activity of apparently ‘aseismic’ fault traces.  相似文献   

20.
In seismically active regions, faults nucleate, propagate, and form networks that evolve over time. To simulate crustal faulting processes, including the evolution of fault-zone properties, a rheological model must incorporate concepts such as damage rheology that describe the various stages of the seismic cycle (strain localization, subcritical crack growth and macroscopic failure) while accounting for material degradation and healing and off-fault deformation. Here we study the fundamental patterns of strain-localisation within the framework of a continuum damage rheology by performing a shear band analysis (linear instability analysis) and comparing predictions of shear band orientations with numerical results of the nonlinear problem. We find (analytically and numerically) that the angle between the shear band and the less compressive (transverse) direction is between 47° in compression tests with a strain ratio of 0.25 (highly confined compression test), and 60° for a strain ratio higher than 1.4 (axial compression and transverse extension). In addition we find that shear bands exhibit local dilation (I 1 > 0) in a wide range of strain ratios excluding only simulations with highly confined compression (which yield compacting shear bands or non-localized deformation). Finally, we discuss the applicability of the damage model for simulating deformation in the seismogenic, brittle crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号