首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The impacts of optical properties on radiative forcing due to dust aerosol   总被引:2,自引:1,他引:2  
There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.  相似文献   

2.
Simulations of subtropical marine low clouds and their radiative properties by nine coupled ocean-atmosphere climate models participating in the fourth assesment report (AR4) of the intergovernmental panel on climate change (IPCC) are analyzed. Satellite observations of cloudiness and radiative fluxes at the top of the atmosphere (TOA) are utilized for comparison. The analysis is confined to the marine subtropics in an attempt to isolate low cloudiness from tropical convective systems. All analyzed models have a negative bias in the low cloud fraction (model mean bias of −15%). On the other hand, the models show an excess of cloud radiative cooling in the region (model mean excess of 13 W m−2). The latter bias is shown to mainly originate from too much shortwave reflection by the models clouds rather than biases in the clear-sky fluxes. These results confirm earlier studies, thus no major progress in simulating the marine subtropical clouds is noted. As a consequence of the combination of these two biases, this study suggests that all investigated models are likely to overestimate the radiative response to changes in low level subtropical cloudiness.  相似文献   

3.
This study simulates the effective radiative forcing(ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol–climate coupled model, BCC AGCM2.0.1 CUACE/Aero, in combination with OMI(Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric column ozone(TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere;and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m~(-2), thereby causing an increase in the global annual mean surface temperature by 0.36℃, and precipitation by 0.02 mm d~(-1)(the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4?C in Siberia. There were opposite changes in precipitation near the equator,with an increase of 0.5 mm d~(-1)near the Hawaiian Islands and a decrease of about-0.6 mm d~(-1)near the middle of the Indian Ocean.  相似文献   

4.
沙尘气溶胶辐射强迫全球分布的模拟研究   总被引:5,自引:2,他引:5  
张华  马井会  郑有飞 《气象学报》2009,67(4):510-521
为了定景了解沙尘气溶胶对气候的影响,文中利用一个改进的辐射传输模式,结合伞球气溶胶数据集(G-ADS),计算了晴空条件下,冬夏两季沙尘气溶胶的直接辐射强迫在对流层顶和地面的全球分布,并讨论了云对沙尘气溶胶辐射强迫的影响.计算结果表明,对北半球冬季和夏季而言,在对流层顶沙尘气溶胶的全球短波辐射强迫的平均值分别为-0.477和-0.501 W/m2;长波辐射强迫分别为0.11和0.085 W/m2;全球平均短波地面辐射强迫冬夏两季分别为-1.362和-1.559 W/m2;长波辐射强迫分别为0.274和0.23 W/m2.沙尘气溶胶在对流层顶和地面的负辐射强迫的绝对值郁随太阳天顶角的余弦和地表反照率的增加而增大;地表反照率对沙尘气溶胶辐射强迫的强度和分布都有重要影响.研究指出:云对沙尘气溶胶的直接辐射强迫的影响不仅取决于云量,而且取决于云的高度和云水路径,以及地面反照率和太阳高度角等综合因素.中云和低云对沙尘气溶胶在对流层顶的短波辐射强迫的影响比高云明显.云的存在都使对流层顶长波辐射强迫减少,其中低云的影响最为明显.因此,在估算沙尘气溶胶总的直接辐射强迫时,云的贡献不可忽视.  相似文献   

5.
草原生态系统对气候变化和CO2浓度升高的响应   总被引:9,自引:0,他引:9       下载免费PDF全文
近年来,全球变化和区域响应已成为生态学、植物学、地学和农学的研究热点之一。全球变化引起全球温度升高、降水格局发生变化和土地利用方式改变,研究草原生态系统对全球变化的响应与适应是了解发展和预测陆地生态系统与全球变化相互关系的重要方面。文章对近十年来国内外在CO2浓度升高、温度增加、水分变化等方面对草原生态系统影响的研究进行了评述, 以期加深草原生态系统对全球变化响应的理解,启发研究思路, 激发兴趣。最后提出了应着重加强研究的8个科学问题。  相似文献   

6.
大气CO2浓度增加,大气辐射平衡调整,将影响到大气的辐射加热,对季风环流的产生影响.CMIP6结果显示,大气CO2浓度增加,可减弱季风区主雨季对流层高,低层的辐射加热,加强对流层中层的辐射加热.各季风区加热响应的峰值层次不同:亚洲季风区平均层次最高(500-775 hPa),北非,南美,澳洲季风区次之(550-600 ...  相似文献   

7.
The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29 μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m-2 in January and -2.65 W m-2 in July, respectively. In some areas, indirect radiative forcing reaches $-$10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are -0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.  相似文献   

8.
A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the anthropogenic-forcing-dominant period.  相似文献   

9.
平流层气溶胶的辐射强迫及其气候响应的水平二维分析   总被引:7,自引:0,他引:7  
利用比较先进的辐射模式计算了平流层气溶胶的辐射强迫,并对之进行了参数化。结果发现平流层气溶胶的辐射强迫的水平分布不仅与其本身的水平变化有关,而且与下垫面的反照率有很大的关系。利用近期开发的二维能量平衡模式模拟了皮纳图博火山气溶胶对地面平衡温度的影响,结果表明:皮纳图博火山至喷发后1年半左右降温达最大,至喷发后第5年降温已很小。  相似文献   

10.
A series of 17-yr equilibrium simulations using the NCAR CCM3 (T42 resolution) were performed to investigate the regional scale impacts of land cover change and increasing CO2 over China. Simulations with natural and current land cover at CO2 levels of 280,355, 430, and 505 ppmv were conducted. Results show statistically significant changes in major climate fields (e.g. temperature and surface wind speed) on a 15-yr average following land cover change. We also found increases in the maximum temperature and in the diurnal temperature range due to land cover change. Increases in CO2 affect both the maximum and minimum temperature so that changes in the diurnal range are small. Both land cover change and CO2 change also impact the frequency distribution of precipitation with increasing CO2 tending to lead to more intense precipitation and land cover change leading to less intense precipitation-indeed, the impact of land cover change typically had the opposite effect versus the impacts of CO2. Our results provide support for the inclusion of future land cover change scenarios in long-term transitory climate inodelling experiments of the 21st Century. Our results also support the inclusion of land surface models that can represent future land cover changes resulting from an ecological response to natural climate variability or increasing CO2. Overall, we show that land cover change can have a significant impact on the regional scale climate of China, and that regionally, this impact is of a similar magnitude to increases in CO2 of up to about 430 ppmv. This means that that the impact of land cover change must be accounted for in detection and attribution studies over China.  相似文献   

11.
研究城市地表覆盖与地表温度(LST)的关系对改善城市生态环境具有重要科学意义。在Landsat TM数据支持下,利用线性光谱混合分析模型提取不透水地表信息,结合LST和地表热通量,分析不透水地表覆盖度(ISA)和LST的时空变化特征及其相互关系,探讨不透水地表对LST的影响机理。结果表明:1984—2014年北京不透水地表面积迅速增长,中覆盖度比例下降,高覆盖度比例增加;LST从市中心向郊区递减,高温区向外扩张;LST和ISA呈显著正相关,但不是简单的线性关系;ISA处于0.6~0.9时LST上升速率最快,减少ISA在此范围内的不透水地表集中分布可缓解高温区集中的现象。  相似文献   

12.
张祎  李建 《大气科学进展》2013,30(3):884-907
Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.  相似文献   

13.
Three different reconstructed wind-stress fields which take into account variations of the North Atlantic Oscillation, one general circulation model wind-stress field, and three radiative forcings (volcanic activity, insolation changes and greenhouse gas changes) are used with the UVic Earth System Climate Model to simulate the surface air temperature, the sea-ice cover, and the Atlantic meridional overturning circulation (AMOC) since 1500, a period which includes the Little Ice Age (LIA). The simulated Northern Hemisphere surface air temperature, used for model validation, agrees well with several temperature reconstructions. The simulated sea-ice cover in each hemisphere responds quite differently to the forcings. In the Northern Hemisphere, the simulated sea-ice area and volume during the LIA are larger than the present-day area and volume. The wind-driven changes in sea-ice area are about twice as large as those due to thermodynamic (i.e., radiative) forcing. For the sea-ice volume, changes due to wind forcing and thermodynamics are of similar magnitude. Before 1850, the simulations suggest that volcanic activity was mainly responsible for the thermodynamically produced area and volume changes, while after 1900 the slow greenhouse gas increase was the main driver of the sea-ice changes. Changes in insolation have a small effect on the sea ice throughout the integration period. The export of the thicker sea ice during the LIA has no significant effect on the maximum strength of the AMOC. A more important process in altering the maximum strength of the AMOC and the sea-ice thickness is the wind-driven northward ocean heat transport. In the Southern Hemisphere, there are no visible long-term trends in the simulated sea-ice area or volume since 1500. The wind-driven changes are roughly four times larger than those due to radiative forcing. Prior to 1800, all the radiative forcings could have contributed to the thermodynamically driven changes in area and volume. In the 1800s the volcanic forcing was dominant, and during the first part of the 1900s both the insolation changes and the greenhouse gas forcing are responsible for thermodynamically produced changes. Finally, in the latter part of the 1900s the greenhouse gas forcing is the dominant factor in determining the sea-ice changes in the Southern Hemisphere.
Jan SedláčekEmail:
  相似文献   

14.
Future levels of water stress depend on changes in several key factors including population, climate-change driven water availability, and a carbon dioxide physiological-forcing effect on evaporation and run-off. In this study we use an ensemble of the HadCM3 climate model forced with a range of future emissions scenarios combined with a simple water scarcity index to assess the contribution of each of these factors to the projected population living in water stress over the 21st century.Population change only scenarios increase the number of people living in water stress such that at peak global population 65% of people experience some level of water stress. Globally, the climate model ensemble projects an increase in water availability which partially offsets some of the impacts of population growth. The result is 1 billion fewer people living in water stress by the 2080s under the high end emissions scenarios than if population increased in the absence of climate change.This study highlights the important role plant-physiological forcing has on future water resources. The effect of rising CO2 is to increase available water and to reduce the number of people living in high water stress by around 200 million compared to climate only projections. This effect is of a similar order of magnitude to climate change.  相似文献   

15.
Increases in chlorinated and brominated halocarbons are believed to be responsible for the depletion of stratospheric ozone observed over much of the globe in the past decade or so. Ozone depletion is in turn believed to lead to a negative radiative forcing, tending to cool the stratosphere and the surface. We show that the increasing atmospheric concentrations of ozone-depleting halocarbons and onset of related ozone depletion likely led to a negative forcing of the climate system in the 1980s that slowed significantly the rate of change of total anthropogenic radiative forcing due to the combined effect of all greenhouse gases over that decade. Within the next decade, emissions of these halocarbons are expected to rapidly decrease, with corresponding impacts on ozone and radiative forcing. As the emissions of ozone-depleting gases are reduced and eventually phased out, the rate of ozone depletion is expected to decrease and eventually reverse. All other things being equal, we show that the change from deepening ozone depletion in the 1980s to ozone increases in the future should lead to a pronounced increase in the decadal rate of change of anthropogenic greenhouse forcing of the next few decades, perhaps to levels unprecedented in this century.  相似文献   

16.
The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature datasets. After discussing the reasons for similarities and differences between the various products, the main issues that must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered.These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data,particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late 19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and global temperature records from the four groups that produce series in near-real time.  相似文献   

17.
巢纪平  李耀锟 《气象学报》2010,68(2):147-152
利用一个考虑了辐射能传输的二维能量平衡气候模式,解析地分析了二氧化碳浓度改变后冰界纬度的变化,得到了冰界纬度随CO2浓度变化的关系以及全球平均温度的变化曲线.结果表明,当CO2浓度由工业革命前的280×10-6增加到700×10-6时,冰界仅后退(北半球向北)几个纬度;当CO2的浓度继续增加时,冰界纬度会加速向极地退缩,直至出现全球无极冰覆盖的现象.同样地,当CO2浓度由280×10-6增加到700×10-6时,全球地表平均温度虽然在增加,但增加的速率很小,并且增加的速率在减小,而当大于700×10-6之后,温度增加的速率会快速增大,温度将加速上升.对不同反照率进行敏感性试验,发现当反照率从0.1到0.32时,结果并没有显著地改变,即结果对反照率的变化并不敏感.这一计算结果表明,在目前的状态下,由CO2引起的增温作用似乎处于变化很小的准饱和状态,即目前气候不会因为CO2浓度的增加而迅速变暖.较为实际的情形可能是大气温度在缓慢增加到一定程度后才会迅速升高.这并不意味着可以忽视CO2的增温效应,因为根据计算结果,这个临界值大概在700×10-6左右,当CO2浓度增加到超过临界值之后,气温会剧烈上升,气候将会处在一个非常温暖的阶段.  相似文献   

18.
Li  Qingxiang  Sun  Wenbin  Yun  Xiang  Huang  Boyin  Dong  Wenjie  Wang  Xiaolan L.  Zhai  Panmao  Jones  Phil 《Climate Dynamics》2021,56(1-2):635-650
Climate Dynamics - Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated...  相似文献   

19.
利用1951—2009年南京日平均气温、日最高气温以及日最低气温等资料,分析了南京日最高气温和最低气温的长期演变趋势及其与平均温度的关系。结果表明:近60 a来,南京年平均气温、年平均最高气温、年平均最低气温均呈变暖趋势,20世纪90年代增温尤为明显;日最高气温,除夏季表现为降温趋势外,其他季节均为升温趋势;而四季平均气温和平均最低气温均为增温趋势;夏季气温日较差下降趋势明显,导致夏季昼夜温差减小;极端高温、低温的发生日数均呈下降趋势。极端气温与平均气温之间存在明显的相关性,且极端低温对平均气温影响更为明显。  相似文献   

20.
One-dimensional radiative-convective and photochemical models are used to examine the effects of enhanced CO2 concentrations on the surface temperature of the early Earth and the composition of the prebiotic atmosphere. Carbon dioxide concentrations of the order of 100–1000 times the present level are required to compensate for an expected solar luminosity decrease of 25–30%, if CO2 and H2O were the only greenhouse gases present. The primitive stratosphere was cold and dry, with a maximum H2O volume mixing ratio of 10–6. The atmospheric oxidation state was controlled by the balance between volcanic emission of reduced gases, photo-stimulated oxidation of dissolved Fe+2 in the oceans, escape of hydrogen to space, and rainout of H2O2 and H2CO. At high CO2 levels, production of hydrogen owing to rainout of H2O2 would have kept the H2 mixing ratio above 2×10–4 and the ground-level O2 mixing ratio below 10–11, even if no other sources of hydrogen were present. Increased solar UV fluxes could have led to small changes in the ground-level mixing ratios of both O2 and H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号