首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.  相似文献   

2.
Summary. Amplitude spectra of Rayleigh and Love waves in a layered non-gravitating spherical earth have been obtained using as a source, displacement and stress discontinuities. In each layer elastic parameters and density follow specified functions of radial distance and the solutions of the equations of motion are obtained in terms of exponential functions. The Thomson—Haskell method is extended to this case. The problem reduces to simple calculations as in a plane-layered medium. Numerical results of phase and group velocities up to periods of 300 s in various earth models when compared with earlier results (obtained by numerical integration) show that the present method can be used with sufficient accuracy. The differences in phase velocity, group velocity and amplitude (also surface ellipticity in the case of Rayleigh waves) between spherical- and flat-earth models have been investigated in the range 20–300–s period and expressed in polynomials in the period.  相似文献   

3.
We derive asymptotic formulae for the toroidal and spheroidal eigenfrequencies of a SNREI earth model with two discontinuities, by considering the constructive interference of propagating SH and P-SV body waves. For a model with a smooth solid inner core, fluid outer core and mantle, there are four SH and 10 P-SV ray parameters regimes, each of which must be examined separately. The asymptotic eigenfrequency equations in each of these regimes depend only on the intercept times of the propagating wave types and the reflection and transmission coefficients of the waves at the free surface and the two discontinuities. If the classical geometrical plane-wave reflection and transmission coefficients are used, the final eigenfrequency equations are all real. In general, the asymptotic eigenfrequencies agree extremely well with the exact numerical eigenfrequencies; to illustrate this, we present comparisons for a crustless version of earth model 1066A.  相似文献   

4.
We invert differential SdS-SS traveltime residuals measured from stacked waveforms and finite-frequency sensitivity kernels for topography on the 410- and 660-km discontinuities. This approach yields higher resolution images of transition zone thickness than previous stacking methods, which simply average/smooth over topographic features. Apparent structure measured using simple stacking is highly dependent upon the bin size of each stack. By inverting for discontinuity topography with a variety of bin sizes, we can more accurately calculate the true structure. The inverted transition zone model is similar to simple stack models with an average thickness of 242 km, but the lateral variations in thickness are larger in amplitude and smaller in scale. Fast seismic velocities in 3-D mantle models such as SB4L18 correlate with areas of thicker transition zone. The elongated curvilinear regions of thickened transition zone that occur near subduction zones are narrow and high amplitude, which suggests relatively little lateral spreading and warming of subducted lithosphere within the transition zone. The anomalously thin transition zone regions are laterally narrow, and not broadly continuous. If these variations in transition zone thickness are interpreted as thermal in nature, then this model suggests significant temperature variations on small lateral scales.  相似文献   

5.
Summary. In examining the effect of discontinuities in the Earth's interior on free oscillations, McNabb, Anderssen & Lapwood derived an equation for the asymptotic behaviour of torsional overtone eigenfrequencies of a discontinuous earth model, the constants in their equation being explicitly determined only for the case of one internal discontinuity. Since Brune's phase correlation method for the evaluation of eigenfrequencies from body-wave data implies a ray-mode duality only for continuous earth models, it is desirable to justify the McNabb et al. formulation from the point of view of ray theory.
By a novel method of ray analysis, Wang, Cleary & Anderssen showed that, for earth models with a single discontinuity between the Earth's surface and the core—mantle boundary, the McNabb et al. formulation can be derived from an adaptation of Brune's method to multiply reflected SH body waves recorded at small epicentral distances. In this paper, the technique of Wang et al. is extended to derive the McNabb et al. formulation (with constants explicitly determined) for the general case of earth models with N discontinuities. This establishes a basis for a ray-mode duality for discontinuous earth models.  相似文献   

6.
Summary. The earlier formulation of dispersion function, amplitude response and surface ellipticity for Rayleigh waves in a spherical layered earth has been extended by the reduced-delta matrix to avoid computational instability at high frequencies. We derive a modified formulation, where the layer thickness is kept separated during matrix multiplications. The present formulations are valid for an unlimited frequency range. A numerical experiment with single precision (six decimal digits accuracy) on an IBM 360/44 computer is performed at frequencies from 0.4 to 12.5 Hz on a Shield structure down to a depth of 1090 km below which a complete sphere is assumed. The experiment shows that both reduced-delta matrix and modified formulations generate roots of the dispersion equation without any reduction of layers. However, to avoid unnecessary computation, a layer-reduction procedure has been derived from a modified formulation when the contribution of deep layers becomes insignificant on surface waves.  相似文献   

7.
Modelling dynamic rupture for complex geometrical fault structures is performed through a finite volume method. After transformations for building up the partial differential system following explicit conservative law, we design an unstructured bi-dimensional time-domain numerical formulation of the crack problem. As a result, arbitrary non-planar faults can be explicitly represented without extra computational cost. On these complex surfaces, boundary conditions are set on stress fluxes and not on stress values. Prescribed rupture velocity gives accurate solutions with respect to analytical ones depending on the mesh refinement, while solutions for spontaneous propagation are analysed through numerical means. An example of non-planar spontaneous fault growth in heterogeneous media demonstrates the good behaviour of the proposed algorithm as well as specific difficulties of such numerical modelling.  相似文献   

8.
We present an adaptive unstructured triangular grid finite element approach for effectively simulating plane-wave diffusive electromagnetic fields in 2-D conductivity structures.
The most striking advantage of irregular grids is their potential to incorporate arbitrary geometries including surface and seafloor topography. Adaptive mesh refinement strategies using an a posteriori error estimator yield most efficient numerical solutions since meshes are only refined where required.
We demonstrate the robustness of this approach by comparison with analytical solutions and previously published numerical simulations. Maximum errors may systematically be reduced to, for example, 0.8 per cent for the apparent resistivity and 0.2° in the phase.
An additional accuracy study of the thickness of the air layer in E-polarization suggests to keep a minimum thickness depending on lateral conductivity contrasts within the earth.
Furthermore, we point out the new quality and flexibility of our simulation technique by addressing two marine magnetotelluric applications. In the first case, we discuss topographic effects associated with a synthetic sinusoidal sea bottom model and in the second case, we show a close-to-reality scenario using real bathymetry data from the East Pacific Rise at 17°S.  相似文献   

9.
Planetary topography can either be modelled as a load supported by the lithosphere, or as a dynamic effect due to lithospheric flexure caused by mantle convection. In both cases the response of the lithosphere to external forces can be calculated with the theory of thin elastic plates or shells. On one-plate planets the spherical geometry of the lithospheric shell plays an important role in the flexure mechanism. So far the equations governing the deformations and stresses of a spherical shell have only been derived under the assumption of a shell of constant thickness. However, local studies of gravity and topography data suggest large variations in the thickness of the lithosphere. In this paper, we obtain the scalar flexure equations governing the deformations of a thin spherical shell with variable thickness or variable Young's modulus. The resulting equations can be solved in succession, except for a system of two simultaneous equations, the solutions of which are the transverse deflection and an associated stress function. In order to include bottom loading generated by mantle convection, we extend the method of stress functions to include loads with a toroidal tangential component. We further show that toroidal tangential displacement always occurs if the shell thickness varies, even in the absence of toroidal loads. We finally prove that the degree-one harmonic components of the transverse deflection and of the toroidal tangential displacement are independent of the elastic properties of the shell and are associated with translational and rotational freedom. While being constrained by the static assumption, degree-one loads can deform the shell and generate stresses. The flexure equations for a shell of variable thickness are useful not only for the prediction of the gravity signal in local admittance studies, but also for the construction of stress maps in tectonic analysis.  相似文献   

10.
Summary. For a smooth earth model, observations of a set of high-frequency toroidal modes at fixed slowness yield only a single piece of information, the tau value for that slowness. In this note, a procedure for obtaining the shear velocity structure from free oscillation data for an earth model with velocity discontinuities is developed, based on the method of tau inversion. The information content of the high-frequency modes is greater in this case, and the nature and depths of the discontinuities may be deduced. It is shown, for the real Earth, that the tau values obtained from free oscillation data are affected significantly by the presence of the Moho, but a simple iterative scheme may be used to remove this contamination. Brune's method of deducing mode frequencies from body wave pulses is shown to produce significant errors for a model with a pronounced Moho discontinuity, and the same iterative scheme may also be employed to correct for this effect.  相似文献   

11.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

12.
Global mapping of upper mantle reflectors from long-period SS precursors   总被引:1,自引:0,他引:1  
Long-period precursors to SS resulting from underside reflections off upper mantle discontinuities ( SdS where d is the discontinuity depth) can be used to map the global distribution and depth of these reflectors. We analyse 5,884 long-period seismograms from the Global Digital Seismograph Network (1976-1987, shallow sources, transverse component) in order to identify SdS arrivals. Corrections for velocity dispersion, topography and crustal thickness at the SS bounce point, and lateral variation in mantle velocity are critical for obtaining accurate estimates of discontinuity depths. The 410 and 660 km discontinuities are observed at average depths of 413 and 653 km, and exhibit large-scale coherent patterns of topography with depth variations up to 40 km. These patterns are roughly correlated with recent tomographic models, with fast anomalies in the transition zone associated with highs in the 410 km discontinuity and lows in the 660 km discontinuity, a result consistent with laboratory measurements of Clapeyron slopes for the appropriate phase changes. The best resolved feature in these maps is a trough in the 660 km discontinuity in the northwest Pacific, which appears to be associated with the subduction zones in this region. Amplitude variations in SdS arrivals are not correlated with discontinuity depths and probably result from focusing and defocusing effects along the ray paths. The SdS arrivals suggest the presence of regional reflectors in the upper mantle above 400 km. However, only the strongest of these features are above probable noise levels due to sampling inadequacies.  相似文献   

13.
We consider the two coupled differential equations of the two radial functions appearing in the displacement components of spheroidal oscillations for a transversely isotropic (TI) medium in spherical coordinates. Elements of the layer matrix have been explicitly written—perhaps for the first time—to extend the use of the Thomson-Haskell matrix method to the derivation of the dispersion function of Rayleigh waves in a transversely isotropic spherical layered earth. Furthermore, an earth-flattening transformation (EFT) is found and effectively used for spheroidal oscillations. The exponential function solutions obtained for each layer give the dispersion function for TI spherical media the same form as that on a flat earth. This has been achieved by assuming that the five elastic parameters involved vary as r p and that the density varies as r p-2, where p is an arbitrary constant and r is the radial distance. A numerical illustration with p = - 2 shows that, in spite of the inhomogeneity assumed within layers, the results for spherical harmonic degree n , versus time period T , obtained here for the Primary Reference Earth Model (PREM), agree well with those obtained earlier by other authors using numerical integration or variational methods. The results for isotropic media derived here are also in agreement with previous results. The effect of transverse isotropy on phase velocity for the first two modes of Rayleigh waves in the period range 20 to 240 s is calculated and discussed for continental and oceanic models.  相似文献   

14.
We portray a dedicated spectral-element method to solve the elastodynamic wave equation upon spherically symmetric earth models at the expense of a 2-D domain. Using this method, 3-D wavefields of arbitrary resolution may be computed to obtain Fréchet sensitivity kernels, especially for diffracted arrivals. The meshing process is presented for varying frequencies in terms of its efficiency as measured by the total number of elements, their spacing variations and stability criteria. We assess the mesh quantitatively by defining these numerical parameters in a general non-dimensionalized form such that comparisons to other grid-based methods are straightforward. Efficient-mesh generation for the PREM example and a minimum-messaging domain decomposition and parallelization strategy lay foundations for waveforms up to frequencies of 1 Hz on moderate PC clusters. The discretization of fluid, solid and respective boundary regions is similar to previous spectral-element implementations, save for a fluid potential formulation that incorporates the density, thereby yielding identical boundary terms on fluid and solid sides. We compare the second-order Newmark time extrapolation scheme with a newly implemented fourth-order symplectic scheme and argue in favour of the latter in cases of propagation over many wavelengths due to drastic accuracy improvements. Various validation examples such as full moment-tensor seismograms, wavefield snapshots, and energy conservation illustrate the favourable behaviour and potential of the method.  相似文献   

15.
Summary. The basic equations describing the dynamical effects of the Earth's fluid core (Liouville, Navier-Stokes and elasticity equations) are derived for an ellipsoidal earth model without axial symmetry but with an homogeneous and deformable fluid core and elastic mantle.
We develop the balance of moment of momentum up to the second order and use Love numbers to describe the inertia tensor's variations. The inertial torque takes into account the ellipticity and the volume change of the liquid core. On the core—mantle boundary we locate dissipative, magnetic and viscous torques. In this way we obtain quite a complete formulation for the Liouville equations.
These equations are restricted in order to obtain the usual Chandler and nearly diurnal eigenfrequencies.
Then we propose a method for calculating the perturbations of these eigenfrequencies when considering additional terms in the Liouville equations.  相似文献   

16.
We present an analytical form of the layer propagator matrix for the response of a locally incompressible, layered, linear‐viscoelastic sphere to an external load assuming that the initial density stratification ϱ 0( r ) within each layer is parametrized by Darwin's law. From this, we show that the relaxation of a sphere consisting of locally incompressible layers is governed by a discrete set of viscous modes. The explicit dependence of the layer propagator matrix on the Laplace transform variable allows us to determine the amplitudes of the viscous modes analytically. Employing Darwin's parametrization, we construct three simplified earth models with different initial density gradients that are used to compare the effects of the local incompressibility constraint, div ( ϱ 0 u )=0, and the material incompressibility constraint, div  u =0, on viscoelastic relaxation. We show that a locally incompressible earth model relaxes faster than a materially incompressible model. This is a consequence of the fact that the perturbations of the initial density are zero during viscoelastic relaxation of a locally incompressible medium, so that there are no internal buoyancy forces associated with the continuous radial density gradients, only the buoyancy forces generated by internal density discontinuities. On the other hand, slowly decaying internal buoyancy forces in a materially incompressible earth model cause it to reach the hydrostatic equilibrium after a considerably longer time than a locally incompressible model. It is important to note that the approximation of local incompressibility provides a solution for a compressible earth model that is superior to the conventional solutions for a compressible earth with homogeneous layers because it is based on an initial state that is consistent with the assumption of compressibility.  相似文献   

17.
Summary. In an earlier work, mathematical formulation on computing the electromagnetic response of an arbitrarily shaped three-dimensional inhomogeneity in a layered earth had been worked out using an integral equation technique. The method has been used to show its efficacy by computing numerical results. Introducing suitable changes of variables the secondary contributions to Green's dyadic are put in the form of convolution integrals and are computed using a digital linear filtering scheme. The matrix equation is solved for the unknown electric fields in the inhomogeneity. The scattered fields are then calculated at the surface of the Earth using the appropriate Green's dyadic. The performance of the computations has been shown by comparing the numerical results with those obtained by analogue modelling as well as by other numerical schemes. The use of digital linear filtering saves an enormous amount of computer time.
The effects of varying excitation-frequency, conductivity of the host medium and that of the overburden have been studied in detail for a horizontal loop system traversing over a two-layered earth with a prismatic inhomogeneity situated in the lower conducting half space.  相似文献   

18.
19.
We develop a method for spatio-spectral localization of harmonic data on a sphere and use it to interpret recent high-resolution global estimates of the gravity and topography of Venus in the context of geodynamical models. Our approach applies equally to the simple spatial windowing of harmonic data and to variable-length-scale analyses, which are analogous to a wavelet transform in the Cartesian domain. Using the variable-length-scale approach, we calculate the localized RMS amplitudes of gravity and topography, as well as the spectral admittance between the two fields, as functions of position and wavelength. The observed admittances over 10 per cent of the surface of Venus (highland plateaus and tessera regions) are consistent with isostatic compensation of topography by variations in crustal thickness, while admittances over the remaining 90 per cent of the surface (rises, plains and lowlands) indicate that long-wavelength topography is dominantly the result of vertical convective tractions at the base of the lithosphere. The global average crustal thickness is less than 30 km, but can reach values as large as 40 km beneath tesserae and highland plateaus. We also note that an Earth-like radial viscosity structure cannot be rejected by the gravity and topography data and that, without a mechanical model of the lithosphere, admittance values cannot constrain the thickness of the thermal boundary layer of Venus. Modelling the lithosphere as a thin elastic plate indicates that at the time of formation of relief in highland plateaus and tesserae, the effective elastic plate thickness, Te , was less than 20 km. Estimates of Te at highland rises are consistently less than 30 km. Our inability to find regions with Te > 30 km is inconsistent with predictions made by a class of catastrophic resurfacing models.  相似文献   

20.
Geometric analysis shows that the angle of migration of coastal sedimentary facies is a function of the relative sea-level change and the thickness of sediment deposited or eroded. The angle of facies migration compared to the slopes on the sediment surface determines the degree of facies preservation and stratigraphic relationships to the surrounding facies. Vertical facies successions generated by radial migration of environments show a great deal of variety because the sediment surface in both marine and non-marine areas is concave-up. Both regressive and transgressive sequences with non-erosive marine-nonmarine contacts can be generated. Transgression at a slightly lower angle can form a ravinement surface cut on non-marine deposits with onlapping barrier sands or shallow marine deposits. Regression with relative sea-level drop generates a minor erosion surface with baselapping isolated shoreline deposits. Disequilibrium conditions occur when sea level varies at a rate exceeding the ability of the system to supply or redistribute sediment, with resulting changes in surficial slopes. Onlapping and downlapping stratal relationships across erosion surfaces result because of differences in slopes between marine and non-marine environments. These discontinuities are generally less than one degree, but could possibly be recognized on high quality multichannel seismic lines. Most of these discontinuities are probably not regionally extensive enough to be regarded as sequence boundaries. Tectonic tilting or differential subsidence of strata during depositional hiatuses is necessary to generate true regional unconformities or sequence boundaries. Where facies climb with respect to horizontal, erosion surfaces produced only by this migration may cut across lithostratigraphic units at higher angles, up to 3 or 4 degrees. Low-angle erosion surfaces relevant to the scales of sequence stratigraphic studies may result only from facies migration, even during a period of relative sea-level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号