首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

2.
The bottom currents in the Challenger Deep, the deepest in the world, were measured with super-deep current meters moored at 11°22′ N and 142°35′ E, where the depth is 10915 m. Three current meters were set at 9687 m, 10489 m and 10890 m at the station in the center of the Challenger Deep for 442 days from 1 August 1995 to 16 October 1996. Although rotor revolutions in 60 minutes of recording interval were zero for 37.5% of the time, the maximum current at the deepest layer of 10890 m was 8.1 cm s−1, being composed of tidal currents, inertia motion and long period variations. Two current meters were set at 6608 m and 7009 m at a station 24.9 km north of the center for 443 days from 31 July 1995 to 16 October 1996, and two current meters at 6214 m and 6615 m at a station 40.9 km south of the center for 441 days from 2 August 1995 to 16 October 1996. The mean flow at 7009 m depth at the northern station was 0.7 cm s−1 to 240°T, and that at 6615 m depth at the southern station was 0.5 cm s−1 to 267°T. A westward mean flow prevailed at the stations, and no cyclonic circulation with mean flows of the opposite directions was observed in the Mariana Trench at a longitude of 142°35′ E. Power spectra of daily mean currents showed three spectral peaks at periods of 100 days, 28–32 days and 14–15 days. The peak at 100 day period was common to the power spectra.  相似文献   

3.
Mid-depth circulation of the Shikoku Basin was measured by tracking four SOFAR floats drifting at the 1,500 m layer. Two floats were released on 17 April 1988 at 30°N, 135°59E and tracked for 433 days. Another two were released on 3 November 1988 at 29°52N and 133°25E, and tracked for 234 days. Two floats flowed clockwise around the Shikoku Warm Water Mass with a diameter of 400 km centered at 31°N and 136°E and a mean drift speed of 4.5 cm sec–1. One of the floats showed about ten counterclockwise rotations with a period of about 8 days and a maximum speed of 80 cm sec–1 in the sea area west to the Izu Ridge. In the east to Kyushu, a southward flow was observed under the northward flowing Kuroshio. The southward flow of 4 cm sec–1 drift speed was considered to be a part of the counterclockwise circulation at deep layers along the perimeter of the Shikoku Basin. One float remained for 234 days in a limited area of 100 km by 150 km in the western part of the basin.  相似文献   

4.
Hydrographic casts down to the bottom along two zonal sections at 12°N and 13°N (from 144°E to 127°E) were made with a CTD. Their analysis verified the existence of cold and saline abyssal water between the Mariana Ridge and the Kyushu-Palau Ridge. This result provides evidence of flow into the Philippine Sea through the deep gap called the Yap-Mariana Junction. The properties of deep water are variable in the West Mariana basin but quite homogeneous in the Philippine Basin, indicating the transitional nature in the West Mariana Basin and the existence of older bottom water in the Philippine Basin. A close examination suggests that the bottom water is slightly colder in the western part of the Philippine Basin than in the eastern part of the basin. This slightly colder deep water with a hundred kilometer scale in the western Philippine Basin might be related to a broad western boundary current flowing equatorward along the eastern rise of the Philippine Trench.  相似文献   

5.
The vertical structure of low-frequency flows in the central Ulleung Interplain Gap of the southwestern East Sea (Sea of Japan) is analyzed based on full-depth current measurement during November 2002–April 2004. Record-length mean flows are directed toward the Ulleung Basin (Tsushima Basin) throughout the entire water column. Upper current variability above the permanent thermocline with a dominant period of about 50–60 days is shown to be closely related to the displacement of an anticyclonic warm eddy associated with the westward meander of the Offshore Branch. Fluctuations of deep currents below the permanent thermocline have a dominant period of about 40 days. Coherence between the current near the seabed and shallower depths is statistically significant up to 360 m for a period range between 15 and 100 days, but less significantly correlated with currents in the upper 200 m. Data from the densely equipped mooring line reveal that mean and eddy kinetic energies are minima at 1000 m, where isotherm slopes are also relatively flat. Empirical orthogonal function (EOF) analyses suggest that more than 79% of total variances of upper and deep currents can be explained by their respective first EOF mode characterized by nearly depth-independent eigenvectors. Spectral and EOF analyses of observed currents suggest that most of the deep current variability is not directly related to local upper current variability during the observation period.  相似文献   

6.
The large-scale circulation of the Pacific Ocean consists of two great anticyclonic gyres that contract poleward at increasing depth, two high-latitude cyclonic gyres, two westward flows along 10° to 15° north and south that are found from the surface to abyssal depths, and an eastward flow that takes place just north of the equator at the surface and at about 500m, but lies along the equator at all other depths.This pattern is roughly symmetric about the equator except for the northward flow across the equator in the west and the southward flow in the east.As no water denser than about 26.8 in σ0 is formed in the North Pacific, the denser waters of the North Pacific are dominated by the inflow from the South Pacific. Salinity and oxygen in the deeper water are higher in the South Pacific and the nutrients are lower. These characteristics define recognizable paths as they move northward across the equator in the west and circulate within the North Pacific. Return flow is seen across the equator in the east. Part of it turns westward and then southward with the southward limb of the extended cyclonic gyre, and part continues southward along the eastern boundary and through the Drake Passage.The important differences from earlier studies are that the equatorial crossings and the deep paths of flow are defined, and that there are strong cyclonic gyres in the tropics on either side of the equator.  相似文献   

7.
A set of simultaneous long-term, deep current measurements was taken using a moored array in the mid-ocean of the western North Pacific near 30°N, 146°E. Five current meters at three stations provided good quality records over 84 days. Low-frequency current fluctuations with meridional dominance are clearly seen in the deep layer records. They are consistent with signals of a mesoscale current fluctuation which has a period of about 100 days, an east-west wave length of about 200 km, and a westward phase propagation with a speed of about 2 cm sec–1. Bottom intensification of the east component of low-frequency current fluctuations is also observed.  相似文献   

8.
Hydrographic data show that the meridional deep current at 47°N is weak and southward in northeastern North Pacific; the strong northward current expected for an upwelling in a flat-bottom ocean is absent. This may imply that the eastward-rising bottom slope in the Northeast Pacific Basin contributes to the overturning circulation. After analysis of observational data, we examine the bottom-slope effect using models in which deep water enters the lower deep layer, upwells to the upper deep layer, and exits laterally. The analytical model is based on geostrophic hydrostatic balance, Sverdrup relation, and vertical advection–diffusion balance of density, and incorporates a small bottom slope and an eastward-increasing upwelling. Due to the sloping bottom, current in the lower deep layer intensifies bottomward, and the intensification is weaker for larger vertical eddy diffusivity (K V), weaker stratification, and smaller eastward increase in upwelling. Varying the value of K V changes the vertical structure and direction of the current; the current is more barotropic and flows further eastward as K V increases. The eastward current is reproduced with the numerical model that incorporates the realistic bottom-slope gradient and includes boundary currents. The interior current flows eastward primarily, runs up the bottom slope, and produces an upwelling. The eastward current has a realistic volume transport that is similar to the net inflow, unlike the large northward current for a flat bottom. The upwelling water in the upper deep layer flows southward and then westward in the southern region, although it may partly upwell further into the intermediate layer.  相似文献   

9.
The surface circulation in the western equatorial Pacific Ocean is investigated with the aim of describing intra-annual variations near Palau (134°30′ E, 7°30′ N). In situ data and model output from the Ocean Surface Currents Analysis—Real-time, TRIangle Trans-Ocean buoy Network, Naval Research Laboratory Layered Ocean Model and the Joint Archive for Shipboard ADCP are examined and compared. Known major currents and eddies of the western equatorial Pacific are observed and discussed, and previously undocumented features are identified and named (Palau Eddy, Caroline Eddy, Micronesian Eddy). The circulation at Palau follows a seasonal variation aligned with that of the Asian monsoon (December–April; July–October) and is driven by the major circulation features. From December to April, currents around Palau are generally directed northward with speeds of approximately 20 cm/s, influenced by the North Equatorial Counter-Current and the Mindanao Eddy. The current direction turns slightly clockwise through this boreal winter period, due to the northern migration of the Mindanao Eddy. During April–May, the current west of Palau is reduced to 15 cm/s as the Mindanao Eddy weakens. East of Palau, a cyclonic eddy (Palau Eddy) forms producing southward flow of around 25 cm/s. The flow during the period July to September is disordered with no influence from major circulation features. The current is generally northward west of Palau and southward to the east, each with speeds on the order of 5 cm/s. During October, as the Palau Eddy reforms, the southward current to the east of Palau increases to 15 cm/s. During November, the circulation transitions to the north-directed winter regime.  相似文献   

10.
The Philippine Basin,surrounded by a series of oceanic trenches,is an independent deep ocean basin in the West Pacific Ocean.Its middle part is divided into three marginal sea sub-basins by the Kyushu-Palau and West Mariana Ridges,namely,the West Philippine Basin,the Shikoku and Parece Vela Basins and the Mariana Trough.This paper,through the analysis of the geomorphologic features and gravity and magnetic characteristics of the basin and identification of striped magnetic anomalies,suggests that the entire Philippine Basin developed magnetic lineation of oceanic nature,and therefore,the entire basin is of the nature of oceanic crust.The basin has developed a series of special geomorphic units with different shapes.The KPR runs through the entire Philippine Basin.From the view of geomorphologic features,the KPR is a discontinuous seamount chain (chain-shaped seamounts) and subduction beneath the Japanese Island arc at the Nankai Trough which is the natural boundary between the basin and the Japanese Island arc.At the positions of 25 N,24 N,23 N and 18 N,obvious discontinuity is shown,which belongs to natural topographic discontinuity.Therefore,the KPR is topographically discontinuous.  相似文献   

11.
跨菲律宾海的重复断面水文观测揭示: 菲律宾海底层水体从1990s到2010s增暖了0.002~0.01℃。在西马里亚纳海盆和四国海盆, 较冷的下层绕极深层水(Lower Circumpolar Deep Water, LCDW)减少, 较暖的LCDW增加; 而在菲律宾海盆, 较冷的变性LCDW减少, 较暖的变性LCDW增加。菲律宾海盆4000dbar的热通量是0.0413W·m-2, 而西马里亚纳海盆和四国海盆的是0.0221W·m-2。菲律宾海盆由于深层海洋热膨胀引起的局地海平面上升速度是0.0621mm·yr-1, 而西马里亚纳海盆和四国海盆的是0.0333mm·yr-1。  相似文献   

12.
Deep circulation in the southwestern East/Japan Sea through the Ulleung Interplain Gap (UIG), a possible pathway for deep-water exchange, was directly measured for the first time. Five concurrent current meter moorings were positioned to effectively span the UIG between the islands of Ulleungdo to the west and Dokdo to the east. They provided a 495-day time series of deep currents below 1800 m depth spanning the full breadth of the East Sea Deep and Bottom Water flowing from the Japan Basin into the Ulleung Basin. The UIG circulation is found to be mainly a two-way flow with relatively weak southward flows directed into the Ulleung Basin over about two-thirds of the western UIG. A strong, persistent, and narrow compensating northward outflow occurs in the eastern UIG near Dokdo and is first referred to here as the Dokdo Abyssal Current. The width of the abyssal current is about 20 km below 1800 m depth. The low-frequency variability of the transports is dominated by fluctuations with a period of about 40 days for inflow and outflow transports. The 40-day fluctuations of both transports are statistically coherent, and occur almost concurrently. The overall mean transport of the deep water below 1800 m into the Ulleung Basin over the 16.5 months is about 0.005 Sv (1 Sv=106 m3 s?1), with an uncertainty of 0.025 Sv indicating net transport is negligible below 1800 m through the UIG.  相似文献   

13.
The large-scale circulation of the Indian Ocean has several major components. There is a cyclonic gyre in the far southwest with its axis along about 60°S. It extends to the bottom. North of this the Circumpolar Current flows eastward south of 40°S to more than 3000 m. The axis of the great anticyclonic gyre lies along 35°S to 40°S down to about 2000 m. Below there the western end shifts northward and the axis lies along the central and southeast Indian ridges, with southward flow west of the ridges and northward flow on the east side.There is a westward flow along 10°S to 15°S, which includes water from the Pacific, through the Banda Sea. The flow near the equator is eastward down to the depth of the ridge near 73°E. Flow within both the Arabian Sea and Bay of Bengal is cyclonic down to great depth.There is a southward flow along the coast of Africa in the upper 2000 m joining the Circumpolar Current, and a southward flow along the coast of Australia that does not reach the Circumpolar Current.Below 2500 m there is a northward flow from the Circumpolar Current along the east coast of Madagascar and on into the Somali and Arabian basins.  相似文献   

14.
The investigation of abyssal bedforms and sediment drifts as a tool for understanding the deep flow characteristics allows us to interprete that a benthic storm is primarily related to sediment distribution, development of longitudinal ripple marks, and concentration of suspended particulate matter. There explicitly exists a strong and periodical bottom flow which is called the benthic storm having a current speed of over 15 cm sec?1 and duration of more than two days. Hydrodynamic regime has been thought to affect underlying sediment textural natures which can be used to distinguish between bottom currents with different velocities. Therefore, concentration of medium silt mode (0.010–0.017 mm in size) delineates a high-velocity core of the benthic storm in the deep sea bottom. Bottom current measurements in most of the North Pacific Ocean indicate that present bottom current speeds are generally less than 10 cm sec?1. It appears likely, therefore, that significant erosion is not taking place today. However, at current passages, bases of sea mounts, and other topographic obstructions locally accelerated current flows are recognized to affect bottom configuration. While, it is concluded from bottom echo-characteristics and bottom current measurements that widespread occurrences of echo type 3 (sediment-drift deposit facies) recognized at 22°N and 42°N in the Northwest Pacific are associated with the North Equatorial current and the North Pacific current respectively, and can best be interpreted to be originated from benthic storms, the source of which were come from those surface currents.  相似文献   

15.
In this paper observational data are used to compute drift and geostrophic current components and to evaluate water transport in the upper 0–800 m ocean layer. Water circulation in the south-western Indian Ocean has been shown to differ from the circulation in similar areas of the Atlantic and Pacific Oceans. The West Australian current, closing the anticyclonic gyre, is an intervening flow. On the other hand, within the upper 200 m layer, the current flows southward along the West Australian coast, thereby producing specific hydrological conditions in that region. Translated by Vladimir A. Puchkin.  相似文献   

16.
One year records of four current meters moored at two sites off Sanriku (39°26′ N, 142°45′ E and 143°E) have been analyzed. Mean currents flowed southward to southwestward with velocity 2.5–7.8 cm s−1. The geostrophic velocity appeared to be surface-intensified, and the flows at 500 m depth have a relationship with the 100 m depth temperature distribution, suggesting the influence of the upper layer flows. At a depth of 1500 m and 2500 m, southward to southwestward flows are thought to be a part of the current flowing southward on the western flank of the Japan Trench. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Mooring observation of current and temperature was made at 17.8 m layer of 19 m depth about 8 km east to Kuala Terengganu, Peninsular Malaysia. Harmonic analysis was applied to tidal currents for 30 days in September 1993, and to the tides observed at Chendering. The K1 tide was the largest both in tidal currents and the tides. Daily mean temperature, currents, sea level, and winds were analyzed from September 1993 to May 1994. Northeast Monsoon from December to February caused sea level rise of 50 cm and temperature lowering of 1°C.  相似文献   

18.
Circulations associated with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied using three types of models: a linear, continuously stratified (LCS) model and a nonlinear, -layer model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model (COCO). Solutions are wind forced, and obtained with both open and closed Indonesian passages. Layers 1-4 of LOM correspond to near-surface, thermocline, subthermocline (thermostad), and upper-intermediate (AAIW) water, respectively, and analogous layers are defined for COCO.The three models share a common dynamics. When the Indonesian passages are abruptly opened, barotropic and baroclinic waves radiate into the interiors of both oceans. The steady-state, barotropic flow field from the difference (open − closed) solution is an anticlockwise circulation around the perimeter of the southern Indian Ocean, with its meridional branches confined to the western boundaries of both oceans. In contrast, steady-state, baroclinic flows extend into the interiors of both basins, a consequence of damping of baroclinic waves by diapycnal processes (internal diffusion, upwelling and subduction, and convective overturning). Deep IT-associated currents are the subsurface parts of these baroclinic flows. In the Pacific, they tend to be directed eastward and poleward, extend throughout the basin, and are closed by upwelling in the eastern ocean and Subpolar Gyre. Smaller-scale aspects of their structure vary significantly among the models, depending on the nature of their diapycnal mixing.At the exit to the Indonesian Seas, the IT is highly surface trapped in all the models, with a prominent, deep core in the LCS model and in LOM. The separation into two cores is due to near-equatorial, eastward-flowing, subsurface currents in the Pacific Ocean, which drain layer 2 and layer 3 waters from the western ocean to supply water for the upwelling regions in the eastern ocean; indeed, depending on the strength and parameterization of vertical diffusion in the Pacific interior, the draining can be strong enough that layer 3 water flows from the Indian to Pacific Ocean. The IT in COCO lacks a significant deep core, likely because the model’s coarse bottom topography has no throughflow passage below 1000 m. Consistent with observations, water in the near-surface (deep) core comes mostly from the northern (southern) hemisphere, a consequence of the wind-driven circulation in the tropical North Pacific being mostly confined to the upper ocean; as a result, it causes the near-surface current along the New Guinea coast to retroflect eastward, but has little impact on the deeper New Guinea undercurrent.In the South Pacific, the IT-associated flow into the basin is spread roughly uniformly throughout all four layers, a consequence of downwelling processes in the Indian Ocean. The inflow first circulates around the Subtropical Gyre, and then bends northward at the Australian coast to flow to the equator within the western boundary currents. To allow for this additional, northward transport, the bifurcation latitude of the South Equatorial Current shifts southward when the Indonesian passages are open. The shift is greater at depth (layers 3 and 4), changing from about 14°S when the passages are closed to 19°S when they are open and, hence, accounting for the northward-flowing Great Barrier Reef Undercurrent in that latitude range.After flowing along the New Guinea coast, most waters in layers 1-3 bend offshore to join the North Equatorial Countercurrent, Equatorial Undercurrent, and southern Tsuchiya Jet, respectively, thereby ensuring that northern hemisphere waters contribute significantly to the IT. In contrast, much of the layer 4 water directly exits the basin via the IT, but some also flows into the subpolar North Pacific. Except for the direct layer 4 outflow, all other IT-associated waters circulate about the North Pacific before they finally enter the Indonesian Seas via the Mindanao Current.  相似文献   

19.
20.
This paper is based on the data for the period from 1953 to 1977, which are the monthly averaged ice cover in the Arctic area within 160° E-110° W and north of 50?N, the areal index of the North Pacific subtropical high and the monthly averaged sea surface temperature of the North Pacific. A statistical analysis of the lag correlations between the polar ice from November to July and the sea surface temperature from January to July, and the sea surface temperature from January to July and the subtropical high lagging zero through eleven months is performed.The analysis shows that the lag correlation regions between the polar ice during spring and the sea surface temperature almost coincide with the regions of the California Current and the paitial north equatorial current, and the regions of the California Current and the partial north equatorial current coincide with the principal lag correlation regions between the sea surface temperature and the subtropical high. All the results suggest that the tra  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号