首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
We study the possibility that large flux differences between the poles and the equator at the bottom of the solar convective zone are compatible with the small differences observed at the surface. The consequences of increasing the depth of the convective zone due to overshooting are explored.A Boussinesq model is used for the convective zone and we assume that the interaction of the global convection with rotation is modelled through a convective flux coefficient whose perturbed part is proportional to the local Taylor number. The numerical integration of the equations of motion and energy shows that coexistence between large pole-equator flux differences at the bottom and small ones at the surface is possible if the solar convective zone extends to a depth of 0.4R . The angular velocity distribution inside the convective zone is in agreement with the -dynamo theories of the solar cycle.  相似文献   

2.
A given motion field in a stellar atmosphere is usually observed through filters defined by line shifts and -broadenings and conventionally called macroturbulence and microturbulence.These filters can be defined and computed exactly, as a function of the wave number of the velocity field (Figure 1).We apply the results to several cases of an assumed motion field spectrum, and to observations of broadenings and displacements of solar Fraunhofer lines formed at a depth 5 = 0.1 (Figure 2).The results show that virtually all energy of the photospheric motions at that level is contained in a small range of wavenumbers, corresponding to the observed distribution of granular cell diameters. In other words: a well-developed spectrum of hydrodynamical turbulence extending over a large range of wavelengths does not exist at that level of the photosphere.  相似文献   

3.
The two available methods for determining the rms amplitude of the granular convective velocity field, namely the interpretation of line profiles, and direct measurements of velocity fluctuations in highly resolved spectra, give values ( 2 km/sec, and 0.4 km/sec, resp.) which are apparently inconsistent both in magnitude and in their dependence upon optical depth. We give both theoretical and observational evidence for the working hypothesis, that the best resolved spectra mainly show velocity fluctuations due to the oscillation of the solar atmosphere, whereas the contribution of the granular velocity field is greatly reduced because of atmospheric seeing and can be found only as a weak superposition to the oscillatory velocity field. Realistic assumptions for the typical size of the granulation (2.5) and for the seeing parameter (1), together with a simplified model of the granular velocity field, lead to correction factors of 30 to 40 between the true and observed amplitudes of the granular velocities.Mitteilungen aus dem Fraunhofer Institut, Nr. 95.  相似文献   

4.
In the quasi-linear theory of pitch angle scattering the power spectrum of magnetic field fluctuations is related to the shape of the pitch angle diffusion coefficient D(), the absolute value of the mean free path , and the rigidity dependence of the mean free path (R). We discuss these relations in detail during the solar particle event of 11 April, 1978 which was observed on HELIOS-2 at a distance of 0.49 AU from the Sun. Magnetic field measurements obtained during the time of the event are used as a basis for the layer model in which the method of particle trajectories in an actually measured field is used to simulate pitch angle diffusion. The values of D() and based on the trajectory simulation for 100 MeV protons (field approach) are compared with results obtained from solar proton data (particle approach) and with predictions from quasi-linear theory based on the additional assumption of the slab model for magnetic field fluctuations (QLT approach). The time of the event is characterized by a high level of field fluctuations, the observed mean free path of about 0.03 AU for 100 MeV protons is smaller than the average value near 1 AU. Results from the field and particle approaches agree surprisingly well. The remaining difference in the mean free path of about a factor of 2 could be due to tangential discontinuities which are measured by the magnetometer, but not seen by the real particles traveling along the average field. The results from the field and QLT approaches based on the same set of magnetic field measurements differ by about a factor of 4. One of the reasons for this discrepancy is that the conditions for resonance scattering are only marginally valid. In addition, the wave vectors representing Alfvén-type fluctuations may not be totally field aligned. This deviation from the slab model would cause an increase of the theoretically predicted mean free path and lead to better agreement with the other two approaches.  相似文献   

5.
Since 1986, we have made some improvements to the multichannel solar spectrograph at Purple Mountain Observatory (PMO) step by step, and now we have developed and added to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe simultaneously solar activity at 9 wave bands including Caii H and K line, Mgi b line, Hei D3 line and H through H. The newly developed infrared imaging spectrograph can work in three wavelengths, i.e., Hei 10830 Å, Caii 8542 Å, and H. We replaced plates in the original system with CCDs and placed an image reducer before each CCD in order to match the CCD pixel size. The dispersions for Hei 10830 Å, Caii 8542 Å, and H of the new imaging solar spectrograph are 0.0693 Å, 0.0767 Å, and 0.0754 Å per CCD pixel respectively, and each vertical CCD pixel represents 0.34 arc sec of solar disk. We can obtain the line-center and off-band intensities of the three lines and the intensities of continua adjacent to these lines through the new instrument. We can also acquire velocity maps and line profiles. Therefore, it is specially suitable for two-dimensional (2D) spectroscopic observations of solar flares and active regions. We carry out scanning observation by rotating the second mirror of the coelostat system. In this paper, we introduce the improvements we made and the new imaging solar spectrograph. Some observation results are also presented in this article.  相似文献   

6.
A simple matching technique is developed which allows us to compute the response of the solar envelope to perturbations which occur within the solar convective region, and in timescales of importance to climate. This technique is applied to perturbation of the convective efficiency (-mechanism), and of the non-gas component of the pressure in different regions of the convection zone (-mechanism). The results indicate that while either perturbation affects the solar luminosity, the -mechanism has almost no effect on the solar outer radius, regardless of the affected region, whereas the -mechanism produces radius changes which may be large if the location of perturbation is deep enough.  相似文献   

7.
We consider the problem of the influence of electron scattering on the continuous spectrum of an envelope. For the radiation flux out of the envelope we assume an expression (1) obtained by us previously [3]. Computations using formula (1) are carried out for two models of the envelope: gray andpurely hydrogen. As a result we find the values of the following quantities, which characterize the continuous spectrum: the color indices U-B, B-V, V-R, and V-I; the Balmer jump D, and the bolometric correction BC. The values of these quantities are given in tables as functions of the surface temperature To of the envelope and the parameter /, where is the coefficient of electron scattering and is the mean absorption coefficient. We draw conclusions on the role of electron scattering for each model of the envelope.Translated fromAstrofizika, Vol. 37, No. 3, 1994.  相似文献   

8.
The interaction of rotation and turbulent convection is assumed to give rise to an inhomogeneous, but isotropic, latitude dependent turbulent energy transport, which is described by a convective conduction coefficient c which varies with latitude. Energy balance in the convective zone is then possible only with a slow meridian circulation in the outer convective zone of the sun. The angular momentum transported by this circulation is balanced in a steady state by turbulent viscous transport down an angular velocity gradient. A detailed model is constructed allowing for the transition from convective transport to radiative transport at the boundaries of the convective zone, by using a perturbation analysis in which the latitude variation of c is small. The solution for a thin compressible shell gives equatorial acceleration and a hotter equator than pole, assuming that the convection is preferentially stabilised at the equator. For agreement with the sun's equatorial acceleration the model predicts an equatorial temperature excess of 70 K and a surface meridional velocity of 350 cm/sec from pole to equator.  相似文献   

9.
An essential part in the mechanics under study is taking into consideration the effect of motions of the Universe objects upon that of an individual one surrounded by them including those infinitely far from it. Only macro-objects of the Universe are meant here.
Zusammenfassung Ein wesentlicher Bestandteil der Mechanik unter unserer Betrachtung ist die Berechnung des Einflusses auf die Bewegung eines individuellen Objektes von Bewegungen der Universum Objekte die es umringen einschließlich jene Objekte, die unendlich entfernt sind. Nur Makroobjekte des Weltalles sind in der Absicht dabei.

, . .
  相似文献   

10.
11.
Simple self-consistent models for non-neutral current sheets are considered. Characteristics of high-temperature turbulent current sheets (HTCS) with a small transverse component of magnetic field are determined for conditions in the solar corona. The energy output of such an HTCS is much larger than that of a neutral sheet. This makes it possible to consider the HTCS as an energy source not only in long-lived X-ray loops but also in flaring loops during the not or main phase of a flare. In this case, the magnetic reconnection velocity agrees with the observed velocity of the loop rise. Thus, these phenomena can be interpreted as a result of magnetic reconnection, for example, between new flux emerging from under the photosphere and an old magnetic field.The role of a longitudinal magnetic field in a current sheet is less important for HTCS. As a result of the compression of a longitudinal field, there appears an electric current circulating around the sheet. This current may induce strong Joule heating, if the compression is large. This additional heating is realized because of the annihilation of the main component, not the longitudinal component of magnetic field. The effect is small for HTCS, but may be significant for preflare current sheets.  相似文献   

12.
Recently Mayr et al. (1980) have suggested that the superrotation of planetary atmospheres could, in principle, be understood as a pirouette. Equatorial heating is pumping atmospheric material toward the poles, and with a concomitant reduction in moment of inertia, the atmosphere has the tendency of spinning up. On the Sun, the core is assumed to be rotating with a period of about 12 days (Dicke, 1976; Knight et al., 1979) while the overlaying mantle convection zone has a solid body component of about 27 days. We propose here that this phenomenon could simply be understood as a reverse pirouette. Our model is similar to the models put forth by Kippenhahn (1963), Weiss (1965), Durney (1968), Busse (1970), Yoshimura (1972), Gilman (1974), and Gierasch (1974). Whereas the models listed provided solutions of valid equations and computer analyses, they lack a simple physical picture to explain the phenomenon. In our case, we have the solar oblateness conventionally providing added heat input at the poles. The result is the large scale transport of material toward the equator giving rise to subrotation. The model thus facilitates an understanding of the formation of a slowly rotating convection zone above the more rapidly rotating core. The latitudinal photospheric differential rotation is interpreted as a second order effect associated with horizontal momentum transport. The recent observations of zonal winds drifting equatorward with a 22-year period (Howard and LaBonte, 1980) may be related by this model as a third order effect from a similar periodicity in differential solar heating (pole to equator).  相似文献   

13.
The well-known correlation between granulation intensity and velocity fluctuations causes a shift of the average line position called the convective blue shift. It is argued that this convective blue shift is most likely reponsible for the limb effect of solar Fraunhofer lines. To explain the center-to-limb variation of this limb effect it is essential that both horizontal and vertical motions in the granulation are considered. The effects of a variation in the granulation properties across the Sun on large scale velocity pattern observations are discussed. Abnormal granulation patterns observed inactive regions and at the boundaries of supergranules could be responsible for part or all of the downflow observed there.On leave from Astronomy Department, University of Washington, Seattle, Wash., U.S.A.Operated by the Association of Universities for Research in Astronomy, Inc. under contract AST 74-04129 with the National Science Foundation.  相似文献   

14.
15.
A crossed Yagi antenna array at 35 MHz was employed in conjunction with a polarization switch so as to enable spectral observations of solar noise storm activity in R and L polarizations. Intense decametric solar noise storms were recorded during the third week of November 1975 and fourth week of March 1976 with the help of a high resolution spectroscope operating near 35 MHz.The paper describes some of the new microscopic spectral features observed during these two noise storms. Three sets of high resolution dynamic spectra of decametric solar bursts, two of which are explained in terms of induced scattering of Langmuir waves by thermal ions and the third in terms of additional propagation effects through dense coronal irregularities, are presented. The microscopic bursts, classified as inverted U U and dots, represent small-scale (104 km) phenomena with durations of less than a second.Some burst spectra appear as chain of dots with individual bandwidths 40 kHz and durations 0.3 sec. It is suggested that the bandwidth of such dot emissions (40 kHz) provides an evidence that they might indeed be generated by the process of induced scattering of plasma waves which predicts emission bandwidth f × 10–3, where f is the center frequency.Some bursts are observed as a chain of striations showing curvature along the frequency axis which is attributed to dispersion in propagation delays through the dense coronal irregularities.  相似文献   

16.
17.
Global oscillations of the Sun (r-modes) with very long periods 1 month are reviewed and studied. Such modes would be trapped in an acoustic cavity formed either by most of the convective envelope or by most of the radiative interior. A turning point frequency giving cavity boundaries is defined and the run of eigenvalues for angular harmonics l 3 are plotted for a conventional solar convection zone. The r-modes show equipartition of oscillatory energy among shells which each contain one antinode in the radial dimension. Toroidal motion is dominant to at least the 14th radial harmonic mode. Viscosity from convective turbulence is strong and would damp any mode in just a few solar rotations if it were the only significant nonadiabatic effect. Radial fine splitting which lifts the degeneracy in n is very small (20 nHz or less) for all n 14 trapped in the envelope. But, if splitting could be detected, we would have a valuable new constraint on solar convection theories.  相似文献   

18.
19.
20.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号