首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The spectral angle mapper (SAM), as a spectral matching method, has been widely used in lithological type identification and mapping using hyperspectral data. The SAM quantifies the spectral similarity between an image pixel spectrum and a reference spectrum with known components. In most existing studies a mean reflectance spectrum has been used as the reference spectrum for a specific lithological class. However, this conventional use of SAM does not take into account the spectral variability, which is an inherent property of many rocks and is further magnified in remote sensing data acquisition process. In this study, two methods of determining reference spectra used in SAM are proposed for the improved lithological mapping. In first method the mean of spectral derivatives was combined with the mean of original spectra, i.e., the mean spectrum and the mean spectral derivative were jointly used in SAM classification, to improve the class separability. The second method is the use of multiple reference spectra in SAM to accommodate the spectral variability. The proposed methods were evaluated in lithological mapping using EO-1 Hyperion hyperspectral data of two arid areas. The spectral variability and separability of the rock types under investigation were also examined and compared using spectral data alone and using both spectral data and first derivatives. The experimental results indicated that spectral variability significantly affected the identification of lithological classes with the conventional SAM method using a mean reference spectrum. The proposed methods achieved significant improvement in the accuracy of lithological mapping, outperforming the conventional use of SAM with a mean spectrum as the reference spectrum, and the matching filtering, a widely used spectral mapping method.  相似文献   

2.
In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting.  相似文献   

3.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

4.
Flagrant soil erosion in Morocco is an alarming sign of soil degradation. Due to the considerable costs of detailed ground surveys of this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. In this paper, we characterize the state of land degradation in a small Mediterranean watershed using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and ground-based spectroradiometric measurements. The two visible, the near-infrared and six shortwave infrared bands of the above sensor were calibrated using ground measurements of the spectral reflectance. Field measurements were carried out in the Saboun experimental basin located in the marl soil region of the Moroccan western Rif. The study leads to the development and evaluation of a new spectral approach to express land degradation. This index called Land degradation index (LDI) is based on the concept of the soil line derived from spectroradiometric ground measurements. In this study, we compare LDI and the spectral angle mapping (SAM) approaches to assess and map land degradation. Results show that LDI provides more accurate results for mapping land degradation (Kappa = 0.79) when compared to the SAM method (Kappa = 0.61). Validation and evaluation of the results are based on the thematic maps derived from the ground data (organic matter, clay, silt and sand) by kriging, DEM, slope gradient and photointerpretation.  相似文献   

5.
Successful retrieval of urban impervious surface area is achieved with remote sensing data using the multiple endmember spectral mixture analysis (MESMA). MESMA is well suited for studying the urban impervious surface area because it allows the number and types of the endmembers to vary on a per-pixel basis, thereby, allowing the control of the large spectral variability. However, MESMA must calculate all potential endmember combinations of each pixel to determine the best-fit one. Therefore, it is a time-consuming and inefficient unmixing technology, especially for hyperspectral images because these images have more complicated endmember categories. Hence, in this paper, we design an improved MESMA (SASD-MESMA: spectral angle and spectral distance MESMA) to enhance the computational efficiency of conventional MESMA, and we validate this new method by analyzing the Hyperion image (Jan-2011) and the field-spectra data of Guangzhou (China). In SASD-MESMA, the parameters of spectral angle (SA) and spectral distance (SD) are used to evaluate the similarity degree between library spectra and image spectra in order to identify the most representative endmember combination for each pixel. Results demonstrate that the SA and SD parameters are useful to reduce misjudgment in selecting candidate endmembers and effective for determining the appropriate endmembers in one pixel. Meanwhile, this research indicates that the proposed SASD-MESMA performs very well in retrieving impervious surface area, forest, grass and soil distributions on the sub-pixel level (the overall root mean square error (RMSE) is 0.15 and the correlation coefficient of determination (R2) is 0.68).  相似文献   

6.
Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.  相似文献   

7.
One of the potential applications of polarimetric Synthetic Aperture Radar (SAR) data is the classification of land cover, such as forest canopies, vegetation, sea ice types, and urban areas. In contrast to single or dual polarized SAR systems, full polarimetric SAR systems provide more information about the physical and geometrical properties of the imaged area. This paper proposes a new Bayes risk function which can be minimized to obtain a Likelihood Ratio (LR) for the supervised classification of polarimetric SAR data. The derived Bayes risk function is based on the complex Wishart distribution. Furthermore, a new spatial criterion is incorporated with the LR classification process to produce more homogeneous classes. The application for Arctic sea ice mapping shows that the LR and the proposed spatial criterion are able to provide promising classification results. Comparison with classification results based on the Wishart classifier, the Wishart Likelihood Ratio Test Statistic (WLRTS) proposed by Conradsen et al. (2003) and the Expectation Maximization with Probabilistic Label Relaxation (EMPLR) algorithm are presented. High overall classification accuracy of selected study areas which reaches 97.8% using the LR is obtained. Combining the derived spatial criterion with the LR can improve the overall classification accuracy to reach 99.9%. In this study, fully polarimetric C-band RADARSAT-2 data collected over Franklin Bay, Canadian Arctic, is used.  相似文献   

8.
In the past, researchers tried hard classification techniques with contextual information to improve classification results. While modelling the spatial contextual information for hard classifiers using Markov Random Field it has been found that the Metropolis algorithm is easier to program and it performs better when compared with the Gibbs sampler. In this study, it has been found that in the case of soft contextual classification, the Metropolis algorithm fails to sample from a random field efficiently and the Gibbs sampler performs better than the Metropolis algorithm, due to the high dimensionality of the soft classification outputs.  相似文献   

9.
The split-window algorithm is the most commonly used method for land surface temperature (LST) retrieval from satellite data. Simplification of the Planck’s function, as an important step in developing the SWA, allows us to directly relate the radiance to the temperature toward solving the radiative transfer equation (RTE) set. In this study, Planck’s radiance relationship between two adjacent thermal infrared channels was modeled to solve the RTE set instead of simplification of the Planck’s function. A radiance-based split-window algorithm (RBSWA) was developed and applied to Moderate Resolution Imaging Spectroradiometer (MODIS) data. The performance of the RBSWA was assessed and compared with three most common brightness temperature-based split-window algorithms (BTBSWAs) by using the simulated data and satellite measurements. Simulation analysis showed that the LST retrieval using RBSWA had a Root Mean Square Error (RMSE) of 0.5 K and achieved an improvement of 0.3 K compared with three BTBSWAs, and the LST retrieval accuracy using RBSWA was better than 1.5 K considering uncertainties in input parameters based on the sensitivity analysis. For application of RBSWA to MODIS data, the results showed that: 1) comparison between LST from MODIS LST product and LST retrieved using RBSWA showed a mean RMSE of 1.33 K for 108 groups of MODIS image covering continental US, which indicates RBSWA is reliable and robust; 2) when using the measurements from US surface radiation budget network as real values the RMSE of the RBSWA algorithm was 2.55 K and was slightly better than MODIS LST product; and 3) through the cross validation using Advanced Spaceborne Thermal Emission and Reflection Radiometer LST product, the RMSE of the RBSWA algorithm was 2.23 K and was 0.28 K less than that of MODIS LST product. We conclude that the RBSWA for LST retrieval from MODIS data can attain a better accuracy than the BTBSWA.  相似文献   

10.
This study aims to develop and propose a methodological approach for montado ecosystem mapping using Landsat 8 multi-spectral data, vegetation indices, and the Stochastic Gradient Boosting (SGB) algorithm. Two Landsat 8 scenes (images from spring and summer 2014) of the same area in southern Portugal were acquired. Six vegetation indices were calculated for each scene: the Enhanced Vegetation Index (EVI), the Short-Wave Infrared Ratio (SWIR32), the Carotenoid Reflectance Index 1 (CRI1), the Green Chlorophyll Index (CIgreen), the Normalised Multi-band Drought Index (NMDI), and the Soil-Adjusted Total Vegetation Index (SATVI). Based on this information, two datasets were prepared: (i) Dataset I only included multi-temporal Landsat 8 spectral bands (LS8), and (ii) Dataset II included the same information as Dataset I plus vegetation indices (LS8 + VIs). The integration of the vegetation indices into the classification scheme resulted in a significant improvement in the accuracy of Dataset II’s classifications when compared to Dataset I (McNemar test: Z-value = 4.50), leading to a difference of 4.90% in overall accuracy and 0.06 in the Kappa value. For the montado ecosystem, adding vegetation indices in the classification process showed a relevant increment in producer and user accuracies of 3.64% and 6.26%, respectively. By using the variable importance function from the SGB algorithm, it was found that the six most prominent variables (from a total of 24 tested variables) were the following: EVI_summer; CRI1_spring; SWIR32_spring; B6_summer; B5_summer; and CIgreen_summer.  相似文献   

11.
Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.  相似文献   

12.
There is considerable interest in optimizing geothermal exploration techniques via the mapping of alteration and evaporate mineralisation, as well as of thermal emissions associated with geothermally active areas on the Earth’s surface. Optical and thermal satellite sensor technologies, improvements in processing algorithms and the means for large scale (e.g. 1:250,000) spatial data distribution are required for detecting both these attributes. The extensive visible, -near, -shortwave and thermal infrared (VNIR-SWIR-TIR) data archive acquired by the multi-spectral Advanced Spaceborne Thermal Emission Reflectance Radiometer (ASTER) provides a rich source of geoscience related imagery for geothermal exploration. Examples of generating large scale mosaicked ASTER imagery to provide province to continental mineral mapping have been undertaken in areas including such as Australia, western USA, Namibia and Zagros Mountains Iran. In addition, ASTER’s thermal infrared imagery also provides night time land surface temperature (LST) estimates relevant for detecting possible geothermal related anomalies.This study outlines existing methods for the application of ASTER data for geothermal exploration in East Africa. The study area encompasses a section of the East African Rift System across the Tanzanian and Kenyan border. The area includes rugged volcanic terrain which has had geological mapping of limited coverage at detailed scales, from various heritages and mapping agencies. This study summarizes the technology, the processing methodology and initial results in applying ASTER imagery for such compositional and thermal anomaly mapping related to geothermal activity. Fields observations have been used from the geothermal springs of Lake Natron, Tanzania, and compared with ASTER derived spectral composition and land surface temperature results. Published geothermal fields within the Kenyan portion of the study area have also been incorporated into this study.  相似文献   

13.
Remote sensing digital image analysis has been applied to monitor land clearing and degradation processes on a plateau covered by tiger bush near Niamey in South West Niger, where signs of severe landscape degradation due to fuelwood supply have been observed in the last decades. A MODIS NDVI dataset (2000–2015) and five LANDSAT images (1986–2012) were used to identify spatial and temporal dynamics and to emphasize areas of greater degradation. The study indicates that the land clearing found by previous investigations in the second part of the 20th century is still ongoing, with a decreasing trend of MODIS NDVI values recorded in the period 2000–2015. This trend appeared to be linked to an increase in bare soil areas that was demonstrated by analysis of LANDSAT SAVI images. The investigation also indicated that rates of degradation are stronger in more deteriorated areas like those located nearer Niamey; degradation patterns also tend to increase from the inner areas to the edges of the plateau. These results attest to the urgency to develop effective environmental preservation policies and find alternative solutions for domestic energy supply.  相似文献   

14.
The spatial differentiation of socioeconomic classes in a city can deliver insight into the nexus of urban development and the environment. The purpose of this paper is to identify poor and rich regions in large cities according to the predominant physical characteristics of the regions. Meaningful spatial information from urban systems can be derived using remote sensing and GIS tools, especially in large difficult-to-manage cities where the dynamics of development results in rapid changes to urban patterns. We use here very high resolution imagery data for the identification of homogeneous socioeconomic zones in a city. We formulate the categorization task as a GIS analysis of an image classified with conventional techniques. Experiments are conducted using a QuickBird image of a study area in Lima, Peru. We provide accuracy assessment of results compared to ground truth data. Results show an approximated allocation of socioeconomic zones within Lima. The methodology described could also be applied to other urban centers, particularly large cities of Latin America, which have characteristics similar to those of the study area.  相似文献   

15.
This research explored the integrated use of Landsat Thematic Mapper (TM) and radar (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) data for mapping impervious surface distribution to examine the roles of radar data with different spatial resolutions and wavelengths. The wavelet-merging technique was used to merge TM and radar data to generate a new dataset. A constrained least-squares solution was used to unmix TM multispectral data and multisensor fusion images to four fraction images (high-albedo, low-albedo, vegetation, and soil). The impervious surface image was then extracted from the high-albedo and low-albedo fraction images. QuickBird imagery was used to develop an impervious surface image for use as reference data to evaluate the results from TM and fusion images. This research indicated that increasing spatial resolution by multisensor fusion improved spatial patterns of impervious surface distribution, but cannot significantly improve the statistical area accuracy. This research also indicated that the fusion image with 10-m spatial resolution was suitable for mapping impervious surface spatial distribution, but TM multispectral image with 30 m was too coarse in a complex urban–rural landscape. On the other hand, this research showed that no significant difference in improving impervious surface mapping performance by using either PALSAR L-band or RADARSAT C-band data with the same spatial resolution when they were used for multi-sensor fusion with the wavelet-based method.  相似文献   

16.
在高质量发展的要求下,针对分散的IT基础设施、"孤岛化"的数据资源和生产能力瓶颈等方面的供给侧问题,本文以陕西省地理空间大数据中心建设为例,通过3个阶段性工作推进了测绘事业供给侧结构性改革。首先通过IT基础设施建设与升级实现了集约利用和灵活配置;然后通过数据资源改造与共享实现了大数据分析和开放互联;最后通过产业链升级与高效供给实现了按需更新与服务。经过建设,大数据中心硬件资源利用率接近99%,在地理国情监测、全国GNSS基准站网平差、第三次全国国土调查等方面发挥了提质增效的作用。  相似文献   

17.
This paper describes the structure of the LAND USE SCANNER model, a GIS based model developed to generate spatial forecasts for various types of land use for a large number of grids. The model basically allocates land according to bid prices for various types of land use. The possibility of government intervention in land use is taken into account among others by adding aggregate constraints. The model includes all relevant land use types such as residential, industrial, agricultural, natural areas and water. The model is driven by sectoral models providing forecasts of aggregate land use in various land use categories. An application of the first version of the model is given for the Netherlands with some 200,000 grid cells. Further developments and refinements of the model are planned for the near future. Received: 18 February 1998/Accepted: 29 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号