首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In situ U–Pb dating and trace element analysis of zircons, combined with a textural relationship investigation in thin section, is a powerful tool to constrain the ultra high-pressure stage of high-grade metamorphism. Two types of zircon grains have been identified in thin sections of a retrograde eclogite from the main hole of the Chinese Continental Scientific Drill project in the Sulu UHP terrane. Type 1 zircon grains occur as inclusions in fresh garnet and omphacite, and Type 2 zircon grains were found in symplectite around omphacite. The fresh rims of Type 1 zircons and mantles of a few Type 2 zircons exhibit remarkably lower REE, Y, Nb and Ta contents than the inherited zircon cores, suggesting coeval growth with garnet, rutile and apatite during UHP metamorphism. These may have formed in the UHP metamorphism and survived retrograde metamorphism. The weighted average 206Pb/238U age of these zircon domains (230 ± 4 Ma, 2σ) agrees well with the published age of coesite-bearing zircon separates (230 ± 1 Ma, 2σ), suggesting that the peak UHP metamorphism in the Sulu terrane may have occurred at ~ 230 Ma.Zircon domains surrounded or cut across by symplectite could have been altered by retrograde metamorphism. Together, they provide a younger weighted average 206Pb/238U age of 209 ± 4 Ma (2σ). These retrograde zircon domains have similar REE compositions to the ~ 230 Ma UHP zircon domains. These observations imply that the ~ 209 Ma zircon domains could have formed by fluid activity-associated alterations in the amphibolite-facies metamorphism, which could have resulted in the complete loss of Pb but not REEs in these domains.  相似文献   

2.
《Gondwana Research》2010,18(4):676-687
Ediacaran syenogranites from the Águas Belas pluton, Borborema Province, Northeastern Brazil were investigated in this work. The studied granitoids show high SiO2, Fe# [FeO / (FeO + MgO)], total alkalis (K2O + Na2O) and BaO contents and medium Sr and low Nb contents. They show gentle fractionated rare earth patterns with discrete Eu negative anomalies. Major and trace element data point to chemical features of transitional high-K calc-alkaline to alkaline post-collisional magmatism. Structural data coupled with geochronological data suggest that NNE–SSW-trending sinistral movements at shear zones were initiated at ca. 590 Ma and have activated E–W pre-existing structures at the current crustal level. The synchronism of these shear zones allowed the dilation to generate the necessary space for the emplacement of the Águas Belas pluton.U–Pb SHRIMP zircon data show a cluster of ages around 588 ± 4 Ma which is interpreted as the crystallization age. Some zircon grain cores yielded ages within 2060–1860 Ma and 1670–1570 Ma intervals. Oxygen isotope compositions of zircon grains with distinct ages were measured using SHRIMP techniques. Twenty three analyses in the same zircon spots previously analyzed for U–Pb show δ18O values ranging from 5.79‰ to 10.30‰ SMOW. This large range of values results from variations both between grains and within grains (core–mantle/rim), and is interpreted as the result of mixing of components with distinct oxygen isotope compositions. The U–Pb zircon ages and the δ18O values associated with Paleoproterozoic Nd TDM model ages suggest that the protolith of these granitoids involved a mantle component (Paleoproterozoic lithospheric mantle), Paleoproterozoic and Mesoproterozoic igneous rocks. Interactions with Mesoproterozoic or Neoproterozoic supracrustal rocks, may have occurred during the intrusion. The resulting magma evolved through biotite and K-feldspar fractionation.  相似文献   

3.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

4.
146Sm–142Nd and 147Sm–143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The study of Finsch inclusions was conducted on a composite sample of 50 peridotitic pyropes with a Nd model age of 3.3 Ga. Analysis of the Jack Hills zircons was performed on 790 grains with ion microprobe 207Pb/206Pb spot ages from 3.95 to 4.19 Ga. Finsch pyropes yield 100 × ?142Nd = ? 6 ± 12 ppm, ?143Nd = ? 32.5, and 147Sm/144Nd = 0.1150. These results do not confirm previous claims for a 30 ppm 142Nd excess in South African cratonic mantle. The lack of a 142Nd anomaly in these inclusions suggests that isotopic heterogeneities created by early mantle differentiation were remixed at a very fine scale prior to isolation of the South African lithosphere. Alternatively, this result may indicate that only a fraction of the mantle experienced depletion during the first 400 Myr of its history. Analysis of the Jack Hills zircon composite yielded 100 × ?142Nd = 8 ± 10 ppm, ?143Nd = 45 ± 1, and 147Sm/144Nd = 0.5891. Back-calculation of this present-day ?143Nd yields an unrealistic estimate for the initial ?143Nd of ? 160 ?-units, clearly indicating post-crystallization disturbance of the 147Sm–143Nd system. Examination of 146,147Sm–142,143Nd data reveals that the Nd budget of the Jack Hills sample is dominated by non-radiogenic Nd, possibly contained in recrystallized zircon rims or secondary subsurface minerals. This secondary material is characterized by highly discordant U–Pb ages. Although the mass fraction of altered zircon is unlikely to exceed 5–10% of total sample, its high LREE content precludes a reliable evaluation of 146Sm–142Nd systematics in Jack Hills zircons.  相似文献   

5.
With the aim of constraining the Early Mesozoic tectonic evolution of the eastern section of the Central Asian Orogenic Belt (CAOB), we undertook zircon U–Pb dating and geochemical analyses (major and trace elements, Sr–Nd isotopes) of volcanic rocks of the Luoquanzhan Formation and Daxinggou Group in eastern Heilongjiang and Jilin provinces, China. The analyzed rocks consist mainly of dacite and rhyolite, with SiO2 contents of 68.52–76.65 wt%. Three samples from the Luoquanzhan Formation and one from the Daxinggou Group were analyzed using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb zircon techniques. Three zircons with well-defined oscillatory zoning yielded weighted mean 206Pb/238U ages of 217 ± 1, 214 ± 2, and 208 ± 1 Ma, and one zircon with oscillatory zoning yielded a weighted mean 206Pb/238U age of 201 ± 1 Ma. These ages are interpreted to represent the timing of eruption of the volcanic rocks. The Triassic volcanic rocks are characterized by high SiO2 and low MgO concentrations, enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), (87Sr/86Sr)i = 0.7040–0.7050 (Luoquanzhan Formation) and 0.7163–0.7381 (Daxinggou Group), and εNd (t) = 1.89–3.94 (Luoquanzhan Formation) and 3.42–3.68 (Daxinggou Group). These geochemical features indicate an origin involving the partial melting of juvenile lower crust (Nd model ages (TDM2) of 651–821 Ma) and that compositional variation among the volcanic rocks arose from mineral fractionation and minor assimilation. These volcanic rocks formed within an extensional environment following collision of the NCC and Jiamusi-Khanka Massif during the Late Paleozoic–Early Triassic.  相似文献   

6.
Mesoproterozoic (~ 1050 Ma; Stenian) zircon crystals from the Saranac Prospect, Bancroft, Ontario, contain up to ~ 1 wt.% U and ~ 0.15 wt.% Th and, correspondingly, they are for the most part extensively radiation-damaged (calculated total α-doses 2.3?35.3 × 1018/g). The crystals show textures of complex, intense chemical alteration that is attributed to multiple, low-T replacement events along fluid-controlled reaction fronts. Centers of crystals appear totally replaced; the primary zoning is virtually erased and the material has high porosity and numerous inclusions. Interior regions surrounding the central reworked areas still exhibit primary igneous-type zoning; in those regions the alteration emanates from fractures and then follows the more radiation-damaged growth zones. Altered areas are typically recognized by their high porosity, low BSE intensity, and deficient analytical totals. Those regions often have lost a significant fraction of their radiogenic Pb. They are in general somewhat depleted in Zr, Si, and U, and are notably enriched in Ca and Fe. Element maps reveal elevated concentrations of Al and Y within filled fractures. Our observations indicate that the fluid-driven ion exchange is mainly controlled by the accessibility of micro-areas with elevated levels of radiation damage to transporting fluids via “fast pathways”. Most importantly, there is apparent Zr?Si?U equilibrium between initially existing and newly formed zircon. The retention of U after the chemical replacement (94 ± 14% relative to the original U content in the respective zones) does not significantly fall below the retention of two major cations Zr (95 ± 4%) and Si (95 ± 2%). In spite of the partially extreme hydrothermal alteration overprinting, the original U zoning in the crystals is well preserved. These observations suggest that preferential chemical leaching of U from zircon is clearly not a general feature of this mineral. This in turn seems to question the general validity of hydrothermal experiments to low-T, fluid-driven alteration of zircon in geological environments. The observed apparent immobility of U may affect the interpretation of U?Pb discordance in zircon, and the performance assessment of this mineral as potential waste form for actinides.  相似文献   

7.
Geochronological, geochemical and whole-rock Sr–Nd isotopic analyses have been completed on a suite of alkaline ultramafic dykes from southwest (SW) Guizhou Province, China with the aim of characterising their petrogenesis. The Baiceng ultramafic dykes have a LA-ICP-MS zircon 206Pb/238U age of 88.1 ± 1.1 Ma (n = 8), whereas two phlogopites studied by 40Ar/39Ar dating methods give emplacement ages of 85.25 ± 0.57 Ma and 87.51 ± 0.45 Ma for ultramafic dykes from Yinhe and Lurong, respectively. In terms of composition, these Late Mesozoic ultramafic dykes belong to the alkaline magma series due to their high K2O (3.31–5.04 wt.%) contents. The dykes are characterised by enrichment of light rare earth element (LREE) and large-ion lithosphile elements (LILEs) (Rb and Ba), negative anomalies in high field strength elements (HFSEs), such as, Nb, Ta and Ti relative to primitive mantle, low initial 87Sr/86Sr ratios (0.7060–0.7063) and positive εNd(t) values (0.3–0.4). Such features suggest derivation from low degree (< 1%) partial melting of depleted asthenospheric mantle (garnet-lherzolite), and contamination to various degrees (~ 10%) by interaction with upper crustal materials.  相似文献   

8.
U–Pb zircon geochronology, Sr–Nd isotope and bulk-rock geochemistry have been applied to meta-igneous and meta-sedimentary rocks from high-pressure metamorphic mélanges exposed on the Cycladic islands of Tinos, Syros and Andros. Ion microprobe (SHRIMP) U–Pb zircon dating of 7 samples representing meta-igneous blocks (Tinos), a blackwall zone (Tinos) and chlorite–talc schists from block-matrix contacts (Syros and Tinos) yielded Cretaceous ages of c. 80 Ma. Many of the criteria commonly used to distinguish between magmatic or metamorphic zircon genesis (internal structure, Th/U ratio, REE characteristics, Ti-in zircon thermometry, enclosed mineral phases) do not provide unambiguous constraints for the mode of formation. However, a magmatic origin for Cretaceous zircon of meta-gabbros and eclogites is considered likely. Supporting evidence for a previously suggested metamorphic origin for c. 80 Ma zircon in eclogite has not been found. Zircon of the same age occurring in chlorite–talc schists is presumably related to non-magmatic processes. Well-defined Cretaceous age groups clustering at c. 79 Ma also occur in the detrital zircon populations of 2 quartz mica schists representing the mélange matrix on Tinos, and suggest a much later time for sediment accumulation than previously assumed. The importance of c. 57 Ma zircon ages remains unclear, but may record either HP metamorphic processes or a post-57 Ma depositional age. The youngest age group in a third quartz mica schist from Tinos, collected outside the main mélange occurrences, clusters at c. 226–238 Ma. In all clastic metasediments from Tinos, most data points plot along the concordia between c. 300 and 900 Ma; single data points indicate concordant ages of c. 2.5 Ga, 2.3 Ga and 1 Ga, respectively. The youngest 206Pb/238U age group that has been recognized in a felsic paragneiss from Andros indicates an age of 163.1 ± 3.9 Ma, and mostly represents overgrowths around zircon with ages in the range from ~ 272 to ~ 289 Ma. Single data points of other inherited cores provided 206Pb/238U ages of c. 630 and c. 930 Ma. Meta-gabbros from Tinos show a large compositional variability and were found at 4 locations, each with distinct compositional characteristics, suggesting different crystallization histories, different sources and/or significant post-magmatic disturbance. The geochemistry of mélange blocks and the identical U–Pb zircon ages suggest that the block-matrix associations on Tinos and Syros can be grouped together. On a broader regional scale, there seem to be similarities between some meta-igneous rocks from Tinos and Evvia. Field relationships indicate that the mélanges occurring in southern Andros and northern Tinos can be correlated, but supporting geochemical and/or geochronological evidence for this interpretation could not be established. Previously published Jurassic ages for mafic and felsic mélange blocks from Andros suggest a genetic relationship to the ophiolite occurrences exposed in the larger Balkan region. A similar regional correlation is also considered likely for the Cretaceous meta-gabbros from Tinos and Syros, but cannot be documented with certainty.  相似文献   

9.
The Archean lithospheric root of the North China Craton (NCC) has been considerably eroded and modified by Phanerozoic magmatic processes. Here we investigate the decratonization of the NCC through U–Pb and Hf isotopic analyses of zircons from Cenozoic basalts in the Liaodong Peninsula using ion-probe and MC-ICPMS techniques. The U–Pb zircon geochronology identifies three zircon populations: Precambrian, Paleozoic and Mesozoic. The Precambrian zircons yield 207Pb/206Pb ages of 2275–2567 Ma with a peak at around 2.5 Ga. They define a U–Pb discordia with upper intercept ages of 2447 ± 50 Ma to 2556 ± 50 Ma and a wide range of Hf TDM ages with a mode at 2.7–2.8 Ga. Our results clearly demonstrate the presence of an Archean lower crust in the Liaodong region. The Paleozoic zircons from the Liaodong region lack the clear internal zoning and are subhedral to rounded in shape, and yield a narrow 206Pb/238U concordant ages of 419–487 Ma with a weighted mean age of 462 ± 16 Ma. The Mesozoic zircons predominantly show crystallization in the early Cretaceous and yield a relatively large range in 206Pb/238U ages from 100 to 138 Ma (n = 53) with a peak around 120 Ma. Three samples give indistinguishable weighted mean 206Pb/238U ages of 120 ± 5 Ma, 120 ± 4 Ma and 121 ± 2 Ma. These early Cretaceous zircons have enriched Hf isotope compositions with εHf(t) values from ?26 to ?16. Our results provide important constraints on episodic magmatism during the Phanerozoic in the Liaodong region, which led to substantial reactivation of the Archean basement of the North China Craton.  相似文献   

10.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

11.
In situ zircon U–Pb ages and Hf isotopic data, major and trace elements, and Sr–Nd–Pb isotopic compositions are reported for Nanshanping alkaline rocks from the Zijingshan district in southwestern Fujian Province (the Interior or Western Cathaysia Block) of South China. The Nanshanping alkaline rocks, which consist of porphyritic quartz monzonite, porphyritic syenite, and syenite, revealed a Late Cretaceous age of 100–93 Ma. All of the rocks show high SiO2, K2O + Na2O, and LREE but low CaO, Fe2O3T, MgO, and HFSE (Nb, Ta, P, and Ti) concentrations. These rocks also exhibit uniform initial 87Sr/86Sr ratios of 0.7078 to 0.7087 and εNd(t) values of −4.1 to −7.2, thus falling within the compositional field of Cretaceous basalts and mafic dikes occurring in the Cathaysia Block. Additionally, these rocks display initial Pb isotopic compositions with a 206Pb/204Pbi ratio of 18.25 to 18.45, a 207Pb/204Pbi ratio of 15.63 to 15.67, and a 208Pb/204Pbi ratio of 38.45 to 38.88. Combined with the zircon Hf isotopic compositions (εHf(t) = −11.7 to −3.2), which are different from those of the basement rocks, we suggest that Nanshanping alkaline rocks were primarily derived from a subduction-related enriched mantle source. High Rb/Sr (0.29–0.65) and Zr/Hf (37.5–49.2) but relatively low Ba/Rb (4.4–8.1) ratios suggest that the parental magmas of these rocks were most likely formed via partial melting of a phlogopite-bearing mantle source with carbonate metasomatism. The relatively high SiO2 (62.35–70.79 wt.%) and low Nb/Ta (10.0–15.3) ratios, positive correlation between SiO2 and (87Sr/86Sr)I, and negative correlation between SiO2 and εNd(t) of these rocks suggest that the crustal materials were also involved in formation of the Nanshanping alkaline rocks. Combined with geochemical and isotopic features, we infer magmatic processes similar to AFC (assimilation and fractional crystallization) involving early fractionation of clinopyroxene and olivine and subsequent fractionation of biotite-dominated assemblages coupled with a lesser amount of crustal contamination, thereby forming the Nanshanping alkaline rocks. The Nanshanping alkaline rocks appear to be associated with an extensional environment in the Cathaysia Block. This extensional regime could have resulted in the slab break-off and rollback of the subducting paleo-Pacific plate and the upwelling of the asthenospheric mantle, which induced partial melting of the enriched lithospheric mantle in the Cretaceous.  相似文献   

12.
The northern Banda Arc, eastern Indonesia, exposes upper mantle/lower crustal complexes comprising lherzolites and granulite facies migmatites of the ‘Kobipoto Complex’. Residual garnet–sillimanite granulites, which contain spinel + quartz inclusions within garnet, experienced ultrahigh-temperature (UHT; > 900 °C) conditions at 16 Ma due to heat supplied by lherzolites exhumed during slab rollback in the Banda Arc. Here, we present U–Pb zircon ages and new whole-rock geochemical analyses that document a protracted history of high-T metamorphism, melting, and acid magmatism of a common sedimentary protolith. Detrital zircons from the Kobipoto Complex migmatites, with ages between 3.4 Ga and 216 Ma, show that their protolith was derived from both West Papua and the Archean of Western Australia, and that metamorphism of these rocks on Seram could not have occurred until the Late Triassic. Zircons within the granulites then experienced three subsequent episodes of growth – at 215–173 Ma, 25–20 Ma, and at c. 16 Ma. The population of zircon rims with ages between 215 and 173 Ma document significant metamorphic (± partial melting) events that we attribute to subduction beneath the Bird's Head peninsula and Sula Spur, which occurred until the Banda and Argo continental blocks were rifted from the NW Australian margin of Gondwana in the Late Jurassic (from c. 160 Ma). Late Oligocene-Early Miocene collision between Australia (the Sula Spur) and SE Asia (northern Sulawesi) was then recorded by crystallisation of several 25–20 Ma zircon rims. Thereafter, a large population of c. 16 Ma zircon rims grew during subsequent and extensive Middle Miocene metamorphism and melting of the Kobipoto complex rocks beneath Seram under high- to ultrahigh-temperature (HT–UHT) conditions. Lherzolites located adjacent to the granulite-facies migmatites in central Seram equilibrated at 1280–1300 °C upon their exhumation to 1 GPa (~ 37 km) depth, whereupon they supplied sufficient heat to have metamorphosed adjacent Kobipoto Complex migmatites under UHT conditions at 16 Ma. Calculations suggesting slight (~ 10 vol%) mantle melting are consistent with observations of minor gabbroic intrusions and scarce harzburgites. Subsequent extension during continued slab rollback exhumed both the lherzolites and adjacent granulite-facies migmatites beneath extensional detachment faults in western Seram at 6.0–5.5 Ma, and on Ambon at 3.5 Ma, as recorded by subsequent zircon growth and 40Ar/39Ar ages in these regions. Ambonites, cordierite- and garnet-bearing dacites sourced predominantly from melts generated in the Kobipoto Complex migmatites, were later erupted on Ambon from 3.0 to 1.9 Ma.  相似文献   

13.
This paper presents geochemical, Sr–Nd isotopic, and U–Pb zircon geochronological data on the Alvand plutonic complex in Sanandaj–Sirjan zone (SSZ), Western Iran. The gabbroic rocks show a trend of a calc-alkaline magma suite and are characterized by low initial 87Sr/86Sr ratios (0.7023–0.7037) and positive εNd(t) values (2.9–3.3), which suggest derivation from a moderately depleted mantle source. Geochemical features of the granites illustrate a high-K calc-alkaline magma series, whereas the leucocratic granitoids form part of a low-K series. Granites have intermediate 87Sr/86Sr ratios (0.707–0.719) and negative εNd(t) values (−1.0 to −3.4), while leucocratic granitoids have higher initial 87Sr/86Sr ratio (0.713–0.714) and more negative εNd(t) values (−3.5 to −4.5). Potential basement source lithologies for the granites are Proterozoic granites and orthogneisses, and those for the leucocratic granites are plagioclase-rich sources such as meta-arkoses or tonalites. The U–Pb dating results demonstrate that all granitoids were exclusively emplaced during the Jurassic instead of being Cretaceous or younger in age as suggested previously. The pluton was assembled incrementally over c. 10 Ma. Gabbros formed at 166.5 ± 1.8 Ma, granites between 163.9 ± 0.9 Ma and 161.7 ± 0.6 Ma, and leucocratic granitoids between 154.4 ± 1.3 and 153.3 ± 2.7 Ma. Granites and leucocratic granitoids show some A-type affinity. It is concluded that the Alvand plutonic complex was generated in a continental-arc-related extensional regime during subduction of Neo-Tethyan oceanic crust beneath the SSZ. The U/Pb zircon age data, recently corroborated by similar results in the central and southern SSZ, indicate that Jurassic granitoids are more areally extensive in this belt than previously thought.  相似文献   

14.
This report describes in situ ion microprobe U–Pb dating of a protoconodont, an early Cambrian phosphate microfossil, using laterally high-resolution secondary ion mass spectrometry (NanoSIMS). On a single fragment of a fossil (approximately 850 μm × 250 μm) derived from a sedimentary layer in the Meishucunian Yuhucun Formation, Yunnan Province, southern China, 23 spots provide a 238U/206Pb isochron age of 547 ± 43 Ma (2σ, MSWD = 1.9), which is consistent with the depositional age, 536.5 ± 2.5 Ma estimated using zircon U–Pb dating of interbedded tuffs. However, five spots on a small region (approximately 250 μm × 100 μm) in the same protoconodont yield an isochron age of 417 ± 74 Ma (2σ, MSWD = 0.31), apparently younger than the formation age. The younger age might be attributable to a later hydrothermal event, perhaps associated with Caledonian orogenic activity recorded in younger zircon with an age of 420–440 Ma. We also measured 87Sr/86Sr ratios of the protoconodont by NanoSIMS. In the older domain, 19 spots give the 87Sr/86Sr ratio of 0.71032 ± 0.00023 (2σ), although seven spots on the younger region provide the ratio of 0.70862 ± 0.00045; this is significantly less radiogenic than the older domain. This is the first report of U–Pb age and Sr isotope heterogeneity within a single fragment of micro-fossil (215).  相似文献   

15.
In the Caozhuang complex in eastern Hebei, North China Craton, the Paleo- to Eoarchean crustal evolution was earlier revealed by the preservation of detrital zircon grains older than (or as old as) 3.8 Ga in fuchsite-quartzite. In order to test if the Eoarchean antiquity is also preserved in rocks other than the fuchsite quartzite, we collected two paragneisses, a hornblende gneiss and a garnet–biotite gneiss, from Huangbaiyu village and dated their detrital zircon grains. The zircon dating of the hornblende gneiss yielded concordant 207Pb/206Pb ages ranging from 3684 to 3354 Ma. However, an older date of 3782 Ma with 18% discordancy was also obtained. Detrital zircon grains from the garnet–biotite gneiss gave a similar 207Pb/206Pb age range, from 3838 to 3342 Ma. The metamorphic domains of the zircon grains from both samples, including the strongly recrystallized cores and rims, recorded an overprinting metamorphism at ca. 2.5 Ga, which correlates with the most widespread tectono-thermal event in the North China Craton. In situ zircon Hf-isotope analyses on the dated zircon grains yielded a wide range of model ages (TDM1) from 4.0 to 3.3 Ga with corresponding εHf(T) from −36.0 to +4.8. This suggests that the evolution of the crustal segment in this area has involved multiple phases of juvenile crustal addition as well as recycling of older crustal rocks. The new geochronological results imply the presence of a significant amount of Eoarchean crustal fragments in the eastern Hebei area. The sedimentary protoliths of the paragneisses and other high-grade metamorphic rocks in the Caozhuang complex were probably deposited between 3.4 and 2.5 Ga.  相似文献   

16.
Stratabound massive sulfide deposits are widespread along the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and serve as an important copper producer in China. Two contrasting genetic models have been proposed, interpreting the stratabound massive sulfide deposits as a Carboniferous SEDEX protore overprinted by Cretaceous magmatic-hydrothermal system or an Early Cretaceous carbonate replacement deposit. These two contrasting models have been applied to the Xinqiao stratabound Cu-Au sulfide deposit, which is dominated by massive sulfide ores hosted in marine carbonates of the Carboniferous Chuanshan and Huanglong Formations, with minor Cu-Au skarn ores localized in the contact zone between the Cretaceous diorite Jitou stock and the Carboniferous carbonate rocks. New SIMS zircon U-Pb dating suggests that the Jitou stock formed at 138.5 ± 1.1 Ma (2σ, MSWD = 0.6). Pyrite Re-Os dating yields an imprecise date of 142 ± 47 Ma (2σ, MSWD = 7.8). The geochronological data thus constrain the mineralization of the Xinqiao deposit at Early Cretaceous.Fluid inclusions in prograde skarn diopside have homogenization temperatures of 450–600 °C and calculated salinities of 13–58 wt.% NaCl equiv. Quartz from the stratabound ores and pyrite-quartz vein networks beneath the stratabound ores have homogenization temperatures of 290–360 and 200–300 °C, with calculated salinities of 5–12 and 2–10 wt.% NaCl equiv., respectively. Quartz from the skarn ores and veins beneath the stratabound ores have δ18O values of 12.32 ± 0.55 (2 SD, n = 22) and 15.57 ± 1.92‰ (2 SD, n = 60), respectively, corresponding to calculated δ18O values of 6.22 ± 1.59 (2σ) and 6.81 ± 2.76‰ (2σ) for the equilibrated ore-forming fluids. The fluid inclusion and oxygen isotope data thus support a magmatic-hydrothermal origin rather than a SEDEX system for the stratabound ores, with the hydrothermal fluids most likely being derived from the Jitou stock or associated concealed intrusion. Results from this study have broad implications for the genesis and exploration of other stratabound massive sulfide deposits along the MLYMB.  相似文献   

17.
Chromitites enclosed within metasomatised Finero phlogopite peridotite (FPP) contain accessory platinum-group minerals, base metal (BM) sulfides, baddeleyite, zircon, zirconolite, uraninite and thorianite. To provide new insights into mantle-crustal interaction in the Finero lithosphere this study evaluates (1) the mineral chemistry and Os-isotope composition of laurite, (2) the crystal morphology, internal structure, in-situ U-Pb, trace-element and Hf-isotope data of zircon from two chromitite localities at Alpe Polunia and Rio Creves. The osmium isotope results reveal a resticted range of ‘unradiogenic’ 187Os/188Os values for laurite at Alpe Polunia (0.1247–0.1251, mean 0.1249 ± 0.0001). Re-Os model ages (TRD) of laurite reflect an Early Paleozoic partial melting event (ca 450 Ma or older), presumably before the Variscan orogeny. The Os isotopic composition of laurite/chromitite probably preserves their mantle signature and was not affected by later metasomatic processes. U-Pb and Hf-isotope data show that the Finero chromitites have distinct zircon populations with peculiar morphology, internal cathodoluminescence textures, trace-element composition and an overall U-Pb age span from ∼310 Ma to 190 Ma. Three age peaks at Rio Creves (220 ± 4 Ma, 234.2 ± 4.5 Ma and 277.5 ± 3.2 Ma) are consistent with a prolonged formation and multistage zircon growth, in contrast to the common assumption of a single metasomatic event during chromitite formation. The trace-element signatures of zircons are comparable with those of mantle-derived zircons from alkaline ultramafic rocks, supporting the carbonatitic nature of the metasomatism. Hf-isotope compositions of the Finero zircons, with εHf values ranging mainly from −3 to +1, are consistent with crustal input during metasomatism and could indicate that the parental melts/fluids were derived from a relatively old source; the minimum estimates for Hf model ages are 0.8–1.0 Ga. Our findings imply that mantle rocks and metasomatic events at Finero have a far more complex geological history than is commonly assumed.  相似文献   

18.
《Chemical Geology》2007,236(1-2):134-166
The ∼ 5000 km3 Fish Canyon Tuff (FCT) is an important unit for the geochronological community because its sanidine, zircon and apatite are widely used as standards for the 40Ar/39Ar and fission track dating techniques. The recognition, more than 10 years ago [Oberli, F., Fischer, H. and Meier, M., 1990. High-resolution 238U–206Pb zircon dating of Tertiary bentonites and Fish Canyon Tuff; a test for age “concordance” by single-crystal analysis. Seventh International Conference on Geochronology, Cosmochronology and Isotope Geology. Geological Society of Australia Special Publication Canberra, 27:74], of a ≥ 0.4 Ma age difference between the U–Pb zircon ages and 40Ar/39Ar sanidine ages has, therefore, motivated efforts to resolve the origin of this discrepancy. To address this controversial issue, we initially performed 37 U–Pb analyses on mainly air-abraded zircons at ETH Zurich and nearly 200 40Ar/39Ar measurements on hornblende, biotite, plagioclase and sanidine obtained at the University of Geneva, using samples keyed to a refined eruptive stratigraphy of the FCT magmatic system.Disequilibrium-corrected 206Pb/238U ages obtained for 29 single-crystal and three multi-grain analyses span an interval of ∼ 28.67–28.03 Ma and yield a weighted mean age of 28.37 ± 0.05 Ma (95% confidence level), with MSWD = 8.4. The individual dates resolve a range of ages in excess of analytical precision, covering ∼ 600 ka. In order to independently confirm the observed spread in zircon ages, 12 additional analyses were carried out at the Berkeley Geochronology Center (BGC) on individual zircons from a single lithological unit, part of them pre-treated by the “chemical abrasion” (CA) technique [Mattinson, J.M., 2005. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1–2): 47–66]. Whereas the bulk of the BGC results displays a spread overlapping that obtained at ETH, the group of CA treated zircons yield a considerably narrower range with a mean age of 28.61 ± 0.08 Ma (MSWD = 1.0). Both mean zircon ages determined at ETH and BGC are older than the ∼ 28.0 Ma 40Ar/39Ar eruption age of FCT – even when considering the possibility that the latter may be low by as much as ∼ 1% due to a miscalibration of the 40K decay constants – and is thus indicative of a substantial time gap between magma crystallization and extrusion. The CA technique further reveals that younger FCT zircon ages are likely to be associated with chemically unstable U-enriched domains, which may be linked to crystallization during extended magma residence or may have been affected by pre-eruptive and/or post-eruptive secondary loss of radiogenic lead. Due to their complex crystallization history and/or age bias due to Pb loss, the FCT zircon ages are deemed unsuitable for an accurate age calibration of FCT sandine as a fluence monitor for the 40Ar/39Ar method.Even though data statistics preclude unambiguous conclusions, 40Ar/39Ar dating of sanidine, plagioclase, biotite, and hornblende from the same sample of vitrophyric Fish Canyon Tuff supports the idea of a protracted crystallization history. Sanidine, thought to be the mineral with the lowest closure temperature, yielded the youngest age (28.04 ± 0.18 Ma at 95% c.l., using Taylor Creek Rhyolite [Renne, P.R. et al., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145: 117–152.] as the fluence monitor), whereas more retentive biotite, hornblende and plagioclase gave slightly older nominal ages (by 0.2–0.3 Ma). In addition, a laser step-heating experiment on a 2-cm diameter feldspar megacryst produced a “staircase” argon release spectrum (older ages at higher laser power), suggestive of traces of inherited argon in the system. Thermal and water budgets for the Fish Canyon magma indicate that the body remained above its solidus (∼ 700 °C) for an extended period of time (> 105 years). At these temperatures, argon volume diffusion is thought to be fast enough to prevent accumulation of radiogenic Ar. If this statement were true, an existing isotopic record should have been completely reset within a few hundred years, regardless of the phase and initial age of the phenocryst. As these minerals are unlikely to be xenocrysts that were incorporated within such a short time span prior to eruption, we suggest that a fraction of radiogenic Ar can be retained > 105 years, even at T 700 °C.  相似文献   

19.
We report the petrological characteristics and preliminary zircon geochronology based on laser ablation ICP mass spectrometry of the various units in an accretionary belt within the Palghat-Cauvery Shear/Suture Zone in southern India, a trace of the Cambrian Gondwana suture. Zircons extracted from a plagiogranite in association with an ophiolite suite within this suture possess internal structure that suggests magmatic crystallization, and yield mid Neoproterozoic 206Pb/238U age of 817 ± 16 Ma (error: 1σ) constraining the approximate timing of birth of the Mozambique Ocean floor. Compiled age data on zircons separated from a quartzite and metamorphosed banded iron formation within the accretionary belt yields a younger intercept age of 759 ± 41 Ma (error: 1σ) which we relate to a mid Neoproteozoic magmatic arc. Detrital zircons extracted from the quartzite yield 207Pb/206Pb age peaks of about 1.9–2.6 Ga suggesting that they were sourced from multiple protolithis of Neoarchean and Paleoproterozoic. Metamorphic overgrowths on some zircon grains record ca. 500–550 Ma ages which are in good harmony with the known ages for the timing of high-grade metamorphism in this zone during the final stage of continent collision associated with the birth of the Gondwana supercontinent in the latest Neoproterozoic-Cambrian. The preliminary geochronological results documented in our study correlate with the subduction–accretion–collision history associated with the closure of the Mozambique Ocean and the final amalgamation of the Gondwana supercontinent.  相似文献   

20.
This work presents an integrated study of zircon U–Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic–felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093–0.7127, low εNd(t) values ranging from −5.6 to −5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have εHf(t) values ranging from −2.7 to 2.6 and model ages of 951–1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053–0.7058, εNd(t) values of 0.2–1.6 and corresponding T2DM of 1.0–1.1 Ga. Their zircon grains have εHf(t) values ranging from 3.2 to 6.1 and model ages of 774–911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065–0.7117, εNd(t) values from −5.7 to −1.9 and Nd model ages of 1.3–1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd–Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号