首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

2.
We report cosmogenic surface exposure 10Be ages of 21 boulders on moraines in the Jeullesh and Tuco Valleys, Cordillera Blanca, Peru (~10°S at altitudes above 4200 m). Ages are based on the sea-level at high-latitude reference production rate and scaling system of Lifton et al. (2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, 140–161) in the CRONUS-Earth online calculator of Balco et al. (2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174–195). Using the Lifton system, large outer lateral moraines in the Jeullesh Valley have a 10Be exposure age of 12.4 ka, inside of which are smaller moraine systems dated to 10.8, 9.7 and 7.6 ka. Large outer lateral moraines in the Tuco Valley have a 10Be exposure age of 12.5 ka, with inner moraines dated to 11.3 and 10.7 ka. Collectively, these data indicate that glacier recession from the Last Glacial Maximum (LGM) in the Cordillera Blanca was punctuated by three to four stillstands or minor advances during the period 12.5–7.6 ka, spanning the Younger Dryas Chronozone (YDC; ~12.9–11.6 ka) and the cold event identified in Greenland ice cores and many other parts of the world at 8.2 ka. The inferred fluctuations of tropical glaciers at these times, well after their withdrawal from the LGM, indicate an increase in precipitation or a decrease in temperature in this region. Although palaeoenvironmental records show regional and temporal variability, comparison with proxy records (lacustrine sediments and ice cores) indicate that regionally this was a cold, dry period so we ascribe these glacier advances to reduced atmospheric temperature rather than increased precipitation.  相似文献   

3.
Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic 10Be exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the 10Be ages are in the range 10.2–21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic 3He ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes.  相似文献   

4.
《Quaternary Science Reviews》2003,22(5-7):437-444
A long-standing debate regarding the reconstruction of former ice sheets revolves around the use of relative weathering of landscapes, i.e., the assumption that highly weathered landscapes have not been recently glaciated. New cosmogenic isotope measurements from upland bedrock surfaces and erratics along the northeastern margin of the Laurentide Ice Sheet (LIS) shed light on this debate. 10Be and 26Al concentrations from three perched erratics, yielding cosmogenic exposure ages of 17–11 ka, are much lower than those measured in two unmodified, highly weathered tors upon which they lie, which yield cosmogenic exposure ages of >60 ka. These findings suggest that non-erosive ice covered weathered upland surfaces along the northeastern margin of the LIS during the last glacial maximum. These data challenge the use of relative weathering to define the margins of Pleistocene ice sheets. The juxtaposition of non-erosive ice over upland plateaus and erosive ice in adjacent fiords requires strong gradients in basal thermal regimes, suggestive of an ice-stream mode of glaciation.  相似文献   

5.
The Yulong Mountain massif is tectonically active during Quaternary and contains the southernmost glacierized mountains in China, and all of Eurasia. Past glacial remnants remain preserved on the east and west sides of the Yulong Mountains. A ridge of moraine protruded into the Jinsha River at the Daju Basin, damming the river, and forming a lake at the head of the Jinsha River. Cosmogenic 10Be and 26Al provide exposure age dates for the moraine-based fluvial terraces left behind after the dam breached, and for moraine boulders on both the eastern and western sides of the Yulong Mountains. Our results yield exposure ages for the terraces that range from 29 ka to 8 ka, and a downcutting rate of 7.6 m/ka. The preservation of the remaining dam for over 10,000 years suggests stability of the moraine dam and gradual erosion of the dam during drainage of the dammed lake. From the relationship between exposure ages and elevations of the fluvial terraces located in different walls of the Daju fault, we obtain a late Quaternary dip-slip rate of about 5.6 m/ka for the Daju fault. The exposure ages of 10.2 ka and 47 ka for moraine boulders located in the east and west sides of the Yulong Mountains, respectively, coincide with warm periods in the late Quaternary. This implies that precipitation provides the major control for glaciations on the Yulong Mountains, a domain of the southwest Asian monsoon.  相似文献   

6.
《Quaternary Science Reviews》2007,26(11-12):1638-1649
Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ∼3.0 10Be ka.1 Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0–11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in the eight samples probably stems from the fact that only a few thousand years intervened between the retreat of the Pinedale glacier and the advance of the Chicago Lakes glacier; in addition, bedrock in the Chicago Lakes cirque area may have remained covered with snow and ice during that interval, thus partially shielding the bedrock from cosmogenic radiation.  相似文献   

7.
Fourteen samples obtained from Torridon sandstone boulders on four moraines marking the limit of the Wester Ross Readvance (WRR) in NW Scotland yielded tightly clustered 10Be exposure ages confirming contemporaneous or penecontemporaneous moraine deposition. Collectively, the 14 samples yield mean ages of 13.5 ± 1.2 ka to 14.0 ± 1.7 ka, depending on choice of geomagnetic scaling and sampling surface erosion rates. All fourteen moraine ages are significantly younger than an age of ca 16.3 ka previously proposed for the WRR, and also younger than most samples obtained from rock outcrops within the WRR limits. The ages obtained for the WRR moraines appear to confirm that a substantial cover of glacier ice persisted over low ground in NW Scotland during at least the early part of the Lateglacial Interstade (≈Greenland Interstade 1). We infer that the WRR probably occurred in response to rapid short-lived cooling during the Older Dryas climatic reversal (≈Greenland Interstade 1d), though the possibilities that the WRR represents ice-margin response to a later climatic reversal during the Lateglacial Interstade or stabilization and readvance of the ice margin following rapid offshore calving cannot be discounted.  相似文献   

8.
《Applied Geochemistry》2004,19(11):1655-1686
Water samples from short-screen monitoring wells installed along a 90-km transect in southwestern Kansas were analyzed for major ions, trace elements, isotopes (H, B, C, N, O, S, Sr), and dissolved gases (He, Ne, N2, Ar, O2, CH4) to evaluate the geochemistry, radiocarbon ages, and paleorecharge conditions in the unconfined central High Plains aquifer. The primary reactions controlling water chemistry were dedolomitization, cation exchange, feldspar weathering, and O2 reduction and denitrification. Radiocarbon ages adjusted for C mass transfers ranged from <2.6 ka (14C) B.P. near the water table to 12.8 ± 0.9 ka (14C) B.P. at the base of the aquifer, indicating the unconfined central High Plains aquifer contained a stratified sequence of ground water spanning Holocene time. A cross-sectional model of steady-state ground-water flow, calibrated using radiocarbon ages, is consistent with recharge rates ranging from 0.8 mm/a in areas overlain by loess to 8 mm/a in areas overlain by dune sand. Paleorecharge temperatures ranged from an average of 15.2 ± 0.7 °C for the most recently recharged waters to 11.6 ± 0.4 °C for the oldest waters. The temperature difference between Early and Late Holocene recharge was estimated to be 2.4 ± 0.7 °C, after taking into account variable recharge elevations. Nitrogen isotope data indicate NO3 in paleorecharge (average concentration=193 μM) was derived from a relatively uniform source such as soil N, whereas NO3 in recent recharge (average concentration=885 μM) contained N from varying proportions of fertilizer, manure, and soil N. Deep water samples contained components of N2 derived from atmospheric, denitrification, and deep natural gas sources. Denitrification rates in the aquifer were slow (5 ±  10−3 μmol N L−1 a−1), indicating this process would require >10 ka to reduce the average NO3 concentration in recent recharge to the Holocene background concentration.  相似文献   

9.
Woolly rhinoceros bones, from a number of sites in Britain, have been AMS radiocarbon dated following ultrafiltration pre-treatment. These determinations give a coherent set of ages between >50 and c. 35 cal ka BP. The youngest (35,864–34,765 cal BP) come from the area around Bishopbriggs in western central Scotland and are derived from glaciofluvial sand and gravel overlain by till, both deposited during the Last Glacial Maximum (LGM) glaciation. A previous radiocarbon date from the site suggested that woolly rhinoceros lived c. 27 14C ka BP and the region was ice-free at the time. This date has had significant influence on the timing of extinction of woolly rhinoceros and the onset of glaciation over Britain during the LGM. The new dates revise this earlier determination and confirm that woolly rhinoceros became extinct in Britain after c. 35 cal ka BP, that central Scotland was ice-free at this time, and glaciation extended across this region sometime after 35 cal ka BP.  相似文献   

10.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

11.
The sensitivity of Tibetan glacial systems to North Atlantic climate forcing is a major issue in palaeoclimatology. In this study, we present surface exposure ages of erratic boulders from a valley system in the Hengduan Mountains, southeastern Tibet, showing evidence of an ice advance during Heinrich event 1. Cosmogenic nuclide analyses (10Be and 21Ne) revealed consistent exposure ages, indicating no major periods of burial or pre-exposure. Erosion-corrected (3 mm/ka) 10Be exposure ages range from 13.4 to 16.3 ka. This is in agreement with recalculated exposure ages from the same valley system by [Tschudi, S., Schäfer, J.M., Zhao, Z., Wu, X., Ivy-Ochs, S., Kubik, P.W., Schlüchter, C., 2003. Glacial advances in Tibet during the Younger Dryas? Evidence from cosmogenic 10Be, 26Al, and 21Ne. Journal of Asian Earth Sciences 22, 301–306.]. Thus this indicates that local glaciers advanced in the investigated area as a response to Heinrich event 1 cooling and that periglacial surface adjustments during the Younger Dryas overprinted the glacial morphology, leading to deceptively young exposure ages of certain erratic boulders.  相似文献   

12.
《Quaternary Research》2014,81(3):538-544
Measurements of 137Cs concentration in soils were made in a representative catchment to quantify erosion rates and identify the main factors involved in the erosion in the source region of the Yellow River in the Tibetan Plateau. In order to estimate erosion rates in terms of the main factors affecting soil loss, samples were collected taking into account the slope and vegetation cover along six selected transects within the Dari County catchment. The reference inventory for the area was established at a stable, well-preserved, site of small thickness (value of 2324 Bq·m 2). All the sampling sites had been eroded and 137Cs inventories varied widely in the topsoil (14.87–25.56 Bq·kg 1). The effective soil loss values were also highly variable (11.03–28.35 t·km 1·yr 1) in line with the vegetation cover change. The radiometric approach was useful in quantifying soil erosion rates and examining patterns of soil movement.  相似文献   

13.
The timing and causes of the last deglaciation in the southern tropical Andes is poorly known. In the Central Altiplano, recent studies have focused on whether this tropical highland was deglaciated before, synchronously or after the global last glacial maximum (~21 ka BP). In this study we present a new chronology based on cosmogenic 3He (3Hec) dating of moraines on Cerro Tunupa, a volcano that is located in the centre of the now vanished Lake Tauca (19.9°S, 67.6°W). These new 3Hec ages suggest that the Tunupa glaciers remained close to their maximum extent until 15 ka BP, synchronous with the Lake Tauca highstand (17–15 ka BP). Glacial retreat and the demise of Lake Tauca seem to have occurred rapidly and synchronously, within dating uncertainties, at ~15 ka BP. We took advantage of the synchronism of these events to combine a glacier model with a lake model in order to reconstruct precipitation and temperature during the Lake Tauca highstand. This new approach indicates that, during the Tauca highstand (17–15 ka BP), the centre of the Altiplano was characterized by temperature ~6.5 °C cooler and average precipitation higher by a factor ranging between ×1.6 and ×3 compared to the present. Cold and wet conditions thus persisted in a significant part of the southern tropical Andes during the Heinrich 1 event (17–15 ka BP). This study also demonstrates the extent to which the snowline of glaciers can be affected by local climatic conditions and emphasizes that efforts to draw global climate inferences from glacial extents must also consider local moisture conditions.  相似文献   

14.
《Quaternary Science Reviews》2003,22(10-13):1207-1211
The time-integrated slip rate in fault zones can be determined if the deformed deposits are reliably dated. Here, we report optically stimulated luminescence (OSL) ages of Late Pleistocene fluvial deposits cut by the Wangsan fault, southeastern Korea, which displaces a hanging wall block of about 28 m. Five sandy samples of the deformed Quaternary deposits were dated by quartz OSL using the single aliquot regenerative-dose (SAR) protocol. Three samples taken from the footwall block show stratigraphically consistent OSL ages of 54±7, 76±5 and 90±6 ka, from top to bottom. Two samples collected from the same layer in the hanging wall block show reproducible OSL ages of 81±5 and 82±5 ka, which are also in good agreement with the stratigraphic relationships. Our OSL ages yield an average sedimentation rate of the Quaternary deposits as around 0.04 mm a−1, and a minimum value of time-integrated slip rate as 0.52 mm a−1. This minimum slip rate is considerably higher than those reported earlier for Quaternary faults in southeastern Korea. The youngest OSL age (54±7 ka) constrains the maximum value of the recurrence interval of the fault movement.  相似文献   

15.
Exposure dating using cosmogenic 36Cl demonstrates that the summit plateau of Scafell Pike (978 m) in the SW Lake District escaped erosion by glacier ice during the last glacial maximum (LGM; c. 26–21 kyr) and probably throughout the Devensian Glacial Stage (MIS 5d-2). Exposure ages obtained for ice-moulded bedrock on an adjacent col at 750–765 m confirm over-riding and erosion of bedrock by warm-based glacier ice during the LGM. The contrast between the two sites is interpreted in terms of preservation of tors, frost-shattered outcrops and blockfields on terrain above 840–870 m under cold-based ice. An exposure age of 17.3 ± 1.1 kyr for the col at 750–765 m suggests that substantial downwastage of the last ice sheet had occurred by c. 17 kyr, consistent with deglacial exposure ages obtained for other high-level sites in the British Isles. An exposure age of 12.5 ± 0.8 kyr obtained for a glacially transported rockfall boulder within the limits of later corrie glaciation confirms that the final episode of local glaciation in the Lake District occurred during the Loch Lomond Stade (c. 12.9–11.7 kyr). This research also demonstrated the difficulties of obtaining reliable exposure ages from rhyolite and andesite bedrock that has proved resistant to glacial abrasion.  相似文献   

16.
Four large landslides, each with a debris volume >106 m3, in the Himalaya and Transhimalaya of northern India were examined, mapped, and dated using 10Be terrestrial cosmogenic radionuclide surface exposure dating. The landslides date to 7.7±1.0 ka (Darcha), 7.9±0.8 ka (Patseo), 6.6±0.4 ka (Kelang Serai), and 8.5±0.5 ka (Chilam). Comparison of slip surface dips and physically reasonable angles of internal friction suggests that the landslides may have been triggered by increased pore water pressure, seismic shaking, or a combination of these two processes. However, the steepness of discontinuities in the Darcha rock-slope, suggests that it was more likely to have started as a consequence of gravitationally-induced buckling of planar slabs. Deglaciation of the region occurred more than 2000 years before the Darcha, Patseo, and Kelang Serai landslides; it is unlikely that glacial debuttressing was responsible for triggering the landslides. The four landslides, their causes, potential triggers and mechanisms, and their ages are compared to 12 previously dated large landslides in the region. Fourteen of the 16 dated landslides occurred during periods of intensified monsoons. Seismic shaking, however, cannot be ruled out as a mechanism for landslide initiation, because the Himalaya has experienced great earthquakes on centennial to millennial timescales. The average Holocene landscape lowering due to large landslides for the Lahul region, which contains the Darcha, Patseo, and Kelang Serai landslides, is ~0.12 mm/yr. Previously published large-landslide landscape-lowering rates for the Himalaya differ significantly. Furthermore, regional glacial and fluvial denudation rates for the Himalaya are more than an order of magnitude greater. This difference highlights the lack of large-landslide data, lack of chronology, problems associated with single catchment/large landslide-based calculations, and the need for regional landscape-lowering determinations over a standardized time period.  相似文献   

17.
Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions.Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.  相似文献   

18.
《Quaternary Science Reviews》2004,23(16-17):1847-1865
High-resolution seismic data and sediment cores show that an up to 280 m thick sedimentary sequence has been deposited on the south Vøring margin, off mid-Norway, the last ca 250 ka. The sedimentary succession has been divided into six seismic units, dominated by hemipelagic sediments. Five wedge-shaped massive sequences, of marine isotope stages 8, 6 and 2, interfinger the hemipelagic deposits on the upper slope. The wedge-shaped sequences represent glacigenic debris flows that have been fed by till transported to the shelf edge by grounded ice sheets during maximum glaciations. The hemipelagic units show well-defined depocentres, of various thicknesses, on the upper continental slope. Seismic facies interpretation indicates that the sediment distribution locally has been controlled by currents. Commonly, the hemipelagic units are characterised by parallel and continuous reflectors. However, the second youngest unit identified, deposited between 15.7 and 15.0 14C ka BP, is acoustic transparent. We suggest that this unit has been sourced by along-slope transported meltwater plume deposits, released during the initial stage of the last deglaciation of the Norwegian Channel. The hemipelagic sedimentation rates have varied considerably throughout the studied time period. Until ca 21 14C ka BP the rates did not exceed 1.4 m/kyr, whereas during the Last Glacial Maximum the rates increased and reached values of about 36 m/kyr before decreasing again at ca 15 14C ka BP. Observation of iceberg scourings, of MIS 8 age, about 800 m below the present day sea level, suggest that the south Vøring margin has subsided by a rate of 1.2 m/kyr in the Late Quaternary.  相似文献   

19.
The establishment of a chronology of landscape-forming events in lowland and mid-altitude Tasmania, essential for assessing the relative importance of climatic and human influences on erosion, and for assessing present erosion risk, has been limited by the small number of ages obtained and limitations of dating methods. In this paper we critically assess previous Tasmanian studies, list published radiocarbon ages considered to be dependable, present new radiocarbon and thermoluminescence (TL) ages for 25 sites around Tasmania, and consider the evidence for the hypotheses that erosion processes at low and mid altitudes have been: (1) purely climatically controlled; and (2) influenced both by climatic and anthropogenic (increased fire frequency) effects. A total of 94 dependable finite ages (calibrated for radiocarbon and ‘as measured’ for TL and optically stimulated luminescence (OSL) determinations) are listed for deposits comprising dunes, colluvium, alluvium and loess-like aeolian deposits. Two fall in the >100 ka period, 15 fall in the period 65–35 ka, and 77 fall in the period 35–0.3 ka. There was a sustained increase in erosion recorded in the period 35–15 ka, as reflected by a greater number of dated aeolian deposits during this period.We considered three possible biases that may have affected the age distribution obtained: the limitations of radiocarbon dating, sampling bias, and preservation bias. Sampling bias may have favoured more recent dune strata, but radiocarbon dating and preservation biases are unlikely to have significantly distorted the age distribution obtained.Long but intermittent aeolian deposition is recorded at two sites (Southwood B; c. 59–28 ka and Dunlin Dune; c. 29–14 ka) but there is no evidence of regional loess deposits such as found in New Zealand. The timing of increased erosion in Tasmania between 35 and 30 ka approximately coincides with the intermittent ten-fold increase of dust accumulation between 33 and 30 ka in the Antarctic Dome C ice core. The absence of widespread erosion before 35 ka, the abrupt increase of erosion around this time, the frequent association of erosion products with charcoal, the arrival of people in Tasmania at c. 40 cal ka, and the known use of fires by Aborigines to maintain areas of non-climax vegetation suggest that ecosystem disturbance by anthropogenic fires, in a drier climate than that presently prevailing, may have contributed to erosion in lowland and mid-altitude Tasmania after 35 ka. Thus the Tasmanian erosion record provides circumstantial support for the proposition that human dispersal in southeast Australia was accompanied by significant ecological change.  相似文献   

20.
Plio-Pleistocene deposits of the Lower Colorado River (LCR) and tributary alluvial fans emanating from the Black Mountains near Golden Shores, Arizona record six cycles of Late Cenozoic aggradation and incision of the LCR and its adjacent alluvial fans. Cosmogenic 3He (3Hec) ages of basalt boulders on fan terraces yield age ranges of: 3.3–2.2 Ma, 2.2–1.1 Ma, 1.1 Ma to 110 ka, < 350 ka, < 150 ka, and < 63 ka. T1 and Q1 fans are especially significant, because they overlie Bullhead Alluvium, i.e. the first alluvial deposit of the LCR since its inception ca. 4.2 Ma. 3Hec data suggest that the LCR began downcutting into the Bullhead Alluvium as early as 3.3 Ma and as late as 2.2 Ma. Younger Q2a to Q4 fans very broadly correlate in number and age with alluvial terraces elsewhere in the southwestern USA. Large uncertainties in 3Hec ages preclude a temporal link between the genesis of the Black Mountain fans and specific climate transitions. Fan-terrace morphology and the absence of significant Plio-Quaternary faulting in the area, however, indicate regional, episodic increases in sediment supply, and that climate change has possibly played a role in Late Cenozoic piedmont and valley-floor aggradation in the LCR valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号