首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of the large two-ribbon flare on 7 November 2004 made using SOHO and TRACE data are interpreted in terms of a three-dimensional magnetic field model. Photospheric flux evolution indicates that ?1.4×1043 Mx2 of magnetic helicity was injected into the active region during the 40-hour buildup prior to the flare. The magnetic model places a lower bound of 8×1031 ergs on the energy stored by this motion. It predicts that 5×1021 Mx of flux would need to be reconnected during the flare to release the stored energy. This total reconnection compares favorably with the flux swept up by the flare ribbons, which we measure using high-time-cadence TRACE images in 1?600 Å. Reconnection in the model must occur in a specific sequence that would produce a twisted flux rope containing significantly less flux and helicity (1021 Mx and ?3×1042 Mx2, respectively) than the active region as a whole. The predicted flux compares favorably with values inferred from the magnetic cloud observed by Wind. This combined analysis yields the first quantitative picture of the flux processed through a two-ribbon flare and coronal mass ejection.  相似文献   

2.
Using TRACE EUV 171 Å line, Hα line, Zürich radio, RHESSI, and HXRS observations the 29 September 2002 flare (M2.6), which occurred in AR NOAA 0134, was analyzed. Flaring structures were compared with a potential magnetic field model (field lines and quasi-separatrix layers) made from SOHO/MDI full-disk magnetogram. Series of high-resolution SOHO/MDI magnetograms and TRACE white-light images were used to find changes in the active region at the photosphere during the flare. The flare began with a rising of a small dark loop followed by the flare brightening observed in 171 Å with TRACE and Hα lines. In radio wavelengths, first type III bursts were observed 5 min prior to the start of hard X-ray emission, indicating a pre-flare coronal activity. The main hard X-ray emission peak (at 06:36 UT) was associated with the second type III burst activity and several slowly negatively drifting features, all starting from one point on the radio spectrum (probably a shock propagating through structures with different plasma parameters). After this time a huge loop formed and three minutes later it became visible in absorption both in Hα and 171 Å EUV lines. The phase of huge dark loop formation was characterized by long-lasting, slowly negatively drifting pulsations and drifting continuum. Finally, considering this huge loop as a surge an evolution of the event under study is discussed.  相似文献   

3.
An X17 class (GOES soft X-ray) two-ribbon solar flare on October 28, 2003 is analyzed in order to determine the relationship between the timing of the impulsive phase of the flare and the magnetic shear change in the flaring region. EUV observations made by the Transition Region and Coronal Explorer (TRACE) show a clear decrease in the shear of the flare footpoints during the flare. The shear change stopped in the middle of the impulsive phase. The observations are interpreted in terms of the splitting of the sheared envelope field of the greatly sheared core rope during the early phase of the flare. We have also investigated the temporal correlation between the EUV emission from the brightenings observed by TRACE and the hard X-ray (HXR) emission (E > 150 keV) observed by the anticoincidence system (ACS) of the spectrometer SPI on board the ESA INTEGRAL satellite. The correlation between these two emissions is very good, and the HXR sources (RHESSI) late in the flare are located within the two EUV ribbons. These observations are favorable to the explanation that the EUV brightenings mainly result from direct bombardment of the atmosphere by the energetic particles accelerated at the reconnection site, as does the HXR emission. However, if there is a high temperature (T > 20 MK) HXR source close to the loop top, a contribution of thermal conduction to the EUV brightenings cannot be ruled out.  相似文献   

4.
Fletcher  L.  Hudson  H. 《Solar physics》2001,204(1-2):69-89
The `ribbons' of two-ribbon flares show complicated patterns reflecting the linkages of coronal magnetic field lines through the lower solar atmosphere. We describe the morphology of the EUV ribbons of the July 14, 2000 flare, as seen in SOHO, TRACE, and Yohkoh data, from this point of view. A successful co-alignment of the TRACE, SOHO/MDI and Yohkoh/HXT data has allowed us to locate the EUV ribbon positions on the underlying field to within ∼ 2′′, and thus to investigate the relationship between the ribbons and the field, and also the sites of electron precipitation. We have also made a determination of the longitudinal magnetic flux involved in the flare reconnection event, an important parameter in flare energetic considerations. There are several respects in which the observations differ from what would be expected in the commonly-adopted models for flares. Firstly, the flare ribbons differ in fine structure from the (line-of-sight) magnetic field patterns underlying them, apparently propagating through regions of very weak and probably mixed polarity. Secondly, the ribbons split or bifurcate. Thirdly, the amount of line-of-sight flux passed over by the ribbons in the negative and positive fields is not equal. Fourthly, the strongest hard X-ray sources are observed to originate in stronger field regions. Based on a comparison between HXT and EUV time-profiles we suggest that emission in the EUV ribbons is caused by electron bombardment of the lower atmosphere, supporting the hypothesis that flare ribbons map out the chromospheric footpoints of magnetic field lines newly linked by reconnection. We describe the interpretation of our observations within the standard model, and the implications for the distribution of magnetic fields in this active region.  相似文献   

5.
In this paper, we present a comprehensive picture for the M2.0 class flare of September 9, 2002 with an extensive multi-wavelength analysis. The flare was observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the Owens Valley Solar Arrays (OVSA), and Big Bear Solar Observatory (BBSO). At BBSO, the observation was specially made at the wavelength of Hα ? 1.3 Å with a cadence of ~40 ms. For this multi-kernel flare, we find two pairs of conjugate kernels. Each pair has its centroid separation curve, which is well correlated with its own optical light curve. This clearly indicates two separate energy releasing sites. The proposed picture of the two energy release sites is supported by double peaks in microwave profiles, and, especially, the presence of two different 195 Å flaring loops observed by the Extreme UV Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO). Nevertheless, the two pairs surely have some intrinsic relations, which are indicated from both temporal and spatial correlations. Because of the intimate relationship, we propose that the two loop systems were interacting during the flare. In addition, one of the most pronounced features of this multi-kernel flare is that the results from microwaves are poorly correlated with those from hard X-ray (HXR) and optical data. The discrepancy is shown in two aspects: time profiles as well as emission locations. We still cannot understand the cause of the discrepancy, except that the interacting loops may have complicated the situation.  相似文献   

6.
The evolution of an X2.7 solar flare, that occurred in a complex β γ δ magnetic configuration region on 3 November 2003 is discussed by utilizing a multi-wavelength data set. The very first signature of pre-flare coronal activity is observed in radio wavelengths as a type III burst that occurred several minutes prior to the flare signature in Hα. This type III burst is followed by the appearance of a loop-top source in hard X-ray (HXR) images obtained from RHESSI. During the main phase of the event, Hα images observed from ARIES solar tower telescope, Nainital, reveal well-defined footpoint (FP) and loop-top (LT) sources. As the flare evolves, the LT source moves upward and the separation between the two FP sources increases. The co-alignment of Hα with HXR images shows spatial correlation between Hα and HXR footpoints, whereas the rising LT source in HXR is always located above the LT source seen in Hα. The evolution of LT and FP sources is consistent with the reconnection models of solar flares. The EUV images at 195 Å taken by SOHO/EIT reveal intense emission on the disk at the flaring region during the impulsive phase. Further, slow-drifting type IV bursts, observed at low coronal heights at two time intervals along the flare period, indicate rising plasmoids or loop systems. The intense type II radio burst at a time in between these type IV bursts, but at a relatively greater height, indicates the onset of CME and its associated coronal shock wave. The study supports the standard CSHKP model of flares, which is consistent with nearly all eruptive flare models. More importantly, the results also contain evidence for breakout reconnection before the flare phase.  相似文献   

7.
Using RHESSI and some auxiliary observations we examine possible connections between the spatial and temporal structure of nonthermal hard X-ray (HXR) emission sources from the two-ribbon flares of 29 May 2003 and 19 January 2005. In each of these events quasi-periodic pulsations (QPP) with time period of 1 – 3 minutes are evident in both hard X rays and microwaves. The sources of nonthermal HXR emission are situated mainly at the footpoints of the flare arcade loops observed by TRACE and the SOHO/EIT instrument in the EUV range. At least one of the sources moves systematically during and after the QPP phase in each flare. The sources move predominantly parallel to the magnetic inversion line during the 29 May flare and along flare ribbons during the QPP phase of both flares. By contrast, the sources start to show movement perpendicular to the flare ribbons with velocity comparable to that along the ribbons’ movement after the QPP phase. The sources of each pulse are localized in distinct parts of the ribbon during the QPP phase. The measured velocity of the sources and the estimated energy release rate do not correlate well with the flux of the HXR emission calculated from these sources. The sources of microwaves and thermal HXRs are situated near the apex of the flare loop arcade and are not stationary either. Almost all of the QPP as well as some pulses of nonthermal HXR emission during the post-QPP phase reveal soft – hard – soft spectral behavior, indicating separate acts of electron acceleration and injection. In our opinion at least two different flare scenarios based on the Nakariakov et al. (2006, Astron. Astrophys. 452, 343) model and on the idea of current-carrying loop coalescence are suitable for interpreting the observations. However, it is currently not possible to choose between them owing to observational limitations.  相似文献   

8.
We present multi-wavelength observations of a complicated solar eruption event to associate with an X1.2 flare and a Coronal Mass Ejection (CME) on 2003 October 26. The soft X-ray profile shows a possibility for occurrence of two flares with peaks around 06:20 and 07:00 UT. According to our observations, there are many evidences to show that they are corresponding to two energy releases. The first one produces type II, type III, moving type IV continua, a decimetric burst (DCIM) and strong emissions at Hα, 195 and 1600 Å; While the second energy release only produces a group of RS-III bursts, DCIM and Hα emissions. It appears that the first energy release is associated with a CME, while the second CME is quiet. Such observational difference between two energy releases is found indicating two magnetic reconnection processes occurrence with different plasma situation.  相似文献   

9.
By means of Hα, EUV, soft X-ray, hard X-ray, and photospheric magnetic field observations, we report the surge-like eruption of a small-scale filament, called “blowout surge” according to recent observations, occurring on a plage region around AR 10876 on 1 May 2006. Along magnetic polarity reversal boundaries with obvious magnetic cancelations, the filament was located underneath a compact coronal arcade and close to one end of large coronal loops around the AR’s periphery. The filament started to erupt about 8 min before the main impulsive phase of a small two-ribbon flare, which had two Hα blue-wing kernels connected by hard X-ray loop-top sources on the both sides of the filament. After the flare end, the filament further underwent a distant eruption following a path nearly along the preexisting large loops, and thus looked like an Hα surge and an EUV jet. During the eruption, a small coronal dimming was formed near the flare, while weak brightenings appeared around the remote end of the large loops. We interpret these joint observations as the filament eruption being confined and guided by the large loops. The filament eruption, initially embedded in one footpoint region of the large loops, can break away from the magnetic restraint of the overlying compact arcade, but might be still limited inside the large loops. As a result, the eruption took a surge form that can only expand laterally along the large loops rather than erupt radially.  相似文献   

10.
Using mainly the 1600 Å continuum channel and also the 1216 Å Lyman-α channel (which includes some UV continuum and C iv emission) aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended nonvisible loops, or the base of an X-ray jet.  相似文献   

11.
We analyze in detail the X2.6 flare that occurred on 2005 January 15 in the NOAA AR 10720 using multiwavelength observations. There are several interesting properties of the flare that reveal possible two-stage magnetic reconnection similar to that in the physical picture of tether-cutting, where the magnetic fields of two separate loop systems reconnect at the flare core region, and subsequently a large flux rope forms, erupts, and breaks open the overlying arcade fields. The observed manifestations include: (1) remote Hα brightenings appear minutes before the main phase of the flare; (2) separation of the flare ribbons has a slow and a fast phase, and the flare hard X-ray emission appears in the later fast phase; (3) rapid transverse field enhancement near the magnetic polarity inversion line (PIL) is found to be associated with the flare. We conclude that the flare occurrence fits the tether-cutting reconnection picture in a special way, in which there are three flare ribbons outlining the sigmoid configuration. We also discuss this event in the context of what was predicted by Hudson et al. (2008), where the Lorentz force near the flaring PIL drops after the flare and consequently the magnetic field lines there turn to be more horizontal as we observed.  相似文献   

12.
The impulsive phase of the 23 July 2002 2B/X4.8 proton flare with a classical two-ribbon structure was observed with the Irkutsk Large Solar Vacuum Telescope (LSVT) in spectropolarimetric mode, with high spatial, spectral, and time resolution. On the basis of 49 spectrograms and 1200 spectral cuts across the flare ribbons, evidence for Hα line impact polarization has been obtained. A systematic change of the Stokes Q and U parameters has been detected across the ribbons for different flare regions measured with a scanning step of 0.85″. In the eastern side of the ribbons, the degree of polarization is 4 – 8%; its plane is oriented toward the solar disk center (radial direction). In the western side, the polarization degree runs up to 25%, and its plane is perpendicular to the disk center direction (tangential direction). A comparison of these results with hard X-ray data (RHESSI) allows us to conclude that high-energy electron beams reached the chromosphere during this flare. The observed changes of the direction of polarization and the vanishing polarization within the ribbons mean that, at the chromospheric level, the energy of electrons remaining in the beam is about 200 eV. A shift of the peak position of polarization relative to the intensity maximum in the ribbons may result from the inclination of the electron beam axis with respect to the solar surface.  相似文献   

13.
Quasi-separatrix layer, also called as QSL, is a region where magnetic connectivity changes drastically, and mostly well coincides with the location of flare ribbons in observations. The research on the relations of this topological structure with the 3-dimensional magnetic reconnection, and solar flares has attracted more and more attention. In this paper, using the theory of QSL we investigate a C5.7 classical two-ribbon solar flare (event 1) which occurred at AR11384 on 2011 December 26, and an M6.5 solar flare (event 2) which occurred at AR12371 on 2015 June 22, respectively. Combining the multi-wavelength data of AIA (Atmospheric Imaging Assembly) and vector magnetogrames of HMI (Helioseismic and Magnetic Imager) onboard SDO (Solar Dynamics Observatory), we extrapolate the coronal magnetic field using the PF (Potential Field) and NLFFF (Nonlinear Force Free Field) models, and calculate the evolution of the AR (Active Region) magnetic free energy. Then, we calculate the logarithmic distribution of Q-factors (magnetic squashing factor) at different heights above the solar photosphere with the results of the PF and NLFFF extrapolations, in order to determine the location of QSL. Afterward, we investigate the evolutionary relation between the QSLs at different heights above the solar photosphere and the flare ribbons observed at the corresponding heights. Finally, we study the multi-wavelength evolution features of the 2 flare events, and obtain by calculation the mean slip velocities of magnetic lines in the event 2 at 304 Å and 335 Å to be 4.6 km s-1 and 6.3 km s-1, respectively. We find that the calculated location of QSL in the chromosphere and corona is in good agreement with the location of flare ribbons at the same height, and the QSLs at different heights have almost the same evolutionary behavior in time as the flare ribbons of the corresponding heights, which highlights the role of QSL in the research of 3D magnetic reconnection and solar flare, and we suggest that the energy release in the flare of event 2 may be triggered by the magnetic reconnection at the place of QSL. We also suggest that the QSL is very important for us to study the essential relation between the 3D and 2D magnetic reconnections.  相似文献   

14.
Garaimov  V.I.  Kundu  M.R. 《Solar physics》2002,207(2):355-367
We present the results of an analysis of a flare event of importance M2.8 that occurred at 00:56 UT 28 August 1999. The analysis is based upon observations made with the Nobeyama radioheliograph (NoRH) and polarimeters (NoRP), TRACE, SOHO/MDI, EIT, and Yohkoh/SXT. The images show a very complex flaring region. Pre-flare TRACE and EIT images at 00:24 UT show a small brightening in the region before the flare occurred. The active region in which the flare occurred had evolving magnetic fields, and new magnetic flux seems to have emerged. The X-ray and radio time profiles for this event show a double-peaked structure. The polarimeter data showed that the maximum radio emission (1200 s.f.u.) occurred at 9.4 GHz. At 17 GHz the NoRH images appear to show four different radio sources including the main spot and the main flare loop. Most of the microwave emission seems to originate from the main flare loop. Comparison of BATSE and microwave time profiles at 17 and 34 GHz from the main sunspot source shows that these profiles have similar structures and they coincide with the hard X-ray peaks. The maximum of the flare loop emission was delayed by 10 s relative to the second maximum of the sunspot associated flare emission. Analysis of SXT images during the post-flare phase shows a complex morphology – several intersecting loops and changes in the shape of the main flare loop.  相似文献   

15.
We make comprehensive analysis of morphological tracings and positional measurements of Hα images, white-light sunspot photographs and chromosphere velocity field, obtained at Yunnan Observatory, and hard X-ray images obtained by the Hinotori satellite, of the loop prominence of 1981 April 27. It seems likely that the observed loop is the projection of a post-flare loop system, and the associated flare occurred on the rear side of the solar disk. A two-ribbon flare such as in the Kopp-Pneuman model can satisfactorily explain all the observed features. The occurrence of such a flare seems likely from the evidence given by the data.  相似文献   

16.
Zhang  Jun  Wang  Jingxiu 《Solar physics》2000,196(2):377-393
We analyzed simultaneous EUV images from the Transition Region And Coronal Explorer (TRACE) and H and H filtergrams from Huairou Solar Observing Station (HSOS). In active region NOAA 8307, an H C5.5 flare occurred near 06:10 UT on 23 August 1998. In this paper, we concentrated on loop–loop interaction, as well as their relationship to the C5.5 flare. We find that while opposite polarity magnetic fields cancelled each other, H bright points appeared, and then the flare occurred. Looking at EUV images, we noticed that a TRACE flare, associated with the C5.5 flare in H and H filtergrams, first appeared as patch-shaped structures, then the flare patches expanded to form bright loops. We used a new numerical technique to extrapolate the chromospheric and coronal magnetic field. Magnetic field loops, which linked flare ribbons, were found. It was suggested that loop interaction in the active region was the cause of the TRACE and H flare; the magnetic topological structures were clearly demonstrated and the TRACE flare was probably due to the interaction among energetic low-lying and other longer (higher) magnetic loops. Each primary flare kernel, seen from H, H filtergrams, and EUV images, was located near the footpoints of several interacting loops.  相似文献   

17.
The cosmic event of Venus transit across the solar disk occurred on 8 June, 2004. The previous such event was witnessed about 122 years ago on 6 December, 1882. We observed this rare transit in H α 6563 Å line-center from Udaipur Solar Observatory (USO) using both the full-disk and small field-of-view solar telescopes. In the earlier historical transits, a “black-drop” effect was observed in white light images, during the contact phases. The transit of 8 June, 2004 provided a unique opportunity to observe this effect, for the first time, in H α. We report that the “black-drop” effect is present in H α also, as in the white light observations made by the ground-based Global Oscillation Network Group (GONG) instrument and the space-borne Transition Region and Coronal Explorer (TRACE) satellite. We did not observe any noticeable “aureole” (atmospheric glow) around Venus during the ingress or egress phases. We have compared the H α images with the multi-wavelength data obtained from the TRACE satellite.  相似文献   

18.
We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures.  相似文献   

19.
We present a technique for automatic determination of flare ribbon separation and the energy released during the course of two-ribbon flares. We have used chromospheric Hα filtergrams and photospheric line-of-sight magnetograms to analyse flare ribbon separation and magnetic field structures, respectively. Flare ribbons were first enhanced and then extracted by the technique of “region growing”, i.e., a morphological operator to help resolve the flare ribbons. Separation of flare ribbons was then estimated from the magnetic-polarity reversal line using an automatic technique implemented into an Interactive Data Language (IDLTM) platform. Finally, the rate of flare-energy release was calculated using photospheric magnetic field data and the corresponding separation of the chromospheric Hα flare ribbons. This method could be applied to measure the motion of any feature of interest (e.g., intensity, magnetic, Doppler) from a given point of reference.  相似文献   

20.
With increasing solar activity since 2010, many flares from the backside of the Sun have been observed by the Extreme Ultraviolet Imager (EUVI) on either of the twin STEREO spacecraft. Our objective is to estimate their X-ray peak fluxes from EUVI data by finding a relation of the EUVI with GOES X-ray fluxes. Because of the presence of the Fe xxiv line at 192 Å, the response of the EUVI 195 Å channel has a secondary broad peak around 15 MK, and its fluxes closely trace X-ray fluxes during the rise phase of flares. If the flare plasma is isothermal, the EUVI flux should be directly proportional to the GOES flux. In reality, the multithermal nature of the flare and other factors complicate the estimation of the X-ray fluxes from EUVI observations. We discuss the uncertainties, by comparing GOES fluxes with the high cadence EUV data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We conclude that the EUVI 195 Å data can provide estimates of the X-ray peak fluxes of intense flares (e.g., above M4 in the GOES scale) to small uncertainties. Lastly we show examples of intense flares from regions far behind the limb, some of which show eruptive signatures in AIA images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号