首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
铌和钽在特殊合金鋼、噴气工业、无綫电技术以及其他工業部門有广泛而重要的用途,因此寻找铌和钽的矿物原料资源应該是我們目前的迫切任务之一。铌和钽的重要矿石是钶铁矿-钽铁矿族矿物及黃綠石-細晶石族矿物,至于其他多数的铌钽酸鹽矿物或钛铌钽酸鹽矿物,如褐钇钶矿、钶钇矿及黑稀金矿等,一般只是作为钇族稀土类元素的资源来进行小規模开采。因为象褐钇钶矿这些矿物,一般比较分散,很少形成規模巨大的矿床;同时由于这些矿物的化学組成相当复杂,在分离及冶煉方面存在有一定的困难。尤其象黑稀金矿或复稀金矿等含钛高的矿物,铌、钽和钛的分离、提取,是一个尚待研究的問題。  相似文献   

2.
山丁 《地质科学》1960,3(6):301-316
由于地球化学条件的不同,各个地貭过程中常形成一些为它所特有的矿物,即特征矿物。这些矿物的詳細研究对于了解該地貭过程的矿物一地球化学作用有着首要的意义。钛妮鈣铈矿、异性石、閃叶石等等都为碱性岩(鈉貭火成岩)的特征矿物。钛妮鈣铈矿属鈣钛矿族,由于类貭同象的发育,本族矿物包括許多矿种,除鈣钛矿、钛妮鈣铈矿外,还有铈鈣钛矿、钛妮铁鈣矿、钛妮钍铈矿(伊林矿)、钛铌铈鈉矿等。本文准备就钛妮鈣铈矿及鈣钛矿-钛妮鈣铈矿族矿物学的某些問題作一些討論。 鈣钛矿、铈鈣钛矿可作为钛的資源,并順便利用其中的稀土元素。钛妮鈣钸矿則为铌、钽、钛、稀士(镧、铈、镨、钕)的綜合資源。这些元素的工业意义这里不必談了,应該指出的是这些矿物常在岩体中大面积出露,因而具有巨大的远景。此外这些矿物在砂矿中亦有富集。  相似文献   

3.
一、前言近年来,对作为稀土和铌矿物原料的易解石类矿物的研究,引起了人們的广泛兴趣。本文卽意在对該类矿物作一全面性的討論。我們知道,在矿物学上象易解石、钇易解石、多钛钶矿这样一些含稀土的偏钛铌酸盐  相似文献   

4.
我国稀土铌钽矿物学研究回顾与展望   总被引:3,自引:0,他引:3  
作为高新技术原料用的稀土铌钽是国家发展的支柱之一, 稀土铌钽矿物学研究在与国家的技术进步同步前进。 通过研究,已经获得了我国产出的全部百余种稀土铌钽矿物的化学组成、物理性质、稀土配 分、结晶参数、共生组合和产状成因的全面系统的鉴定描述成果;发现了多种稀土铌钽新物,并提出许多新规律和新理论,建立了易解石和褐钇铌矿两个新的矿物族;确定了稀土铌钽铁锰钨的复杂氧化物的晶体结构关系;确立变生矿物学为矿物学研究的一个特殊分支,探讨了稀土次生富集的离子型稀土矿成矿机理。  相似文献   

5.
張静 《地质科学》1964,5(4):360-368
钛铌钽酸盐类矿物是稀有元素矿物中最复杂的一类矿物。矿物种类較多,成分也很复杂,同时这些矿物的物理性貭都比較近似,因而利用一般物理方法較难鉴別这类矿物,尤其是它們的变种,因此,要詳細的研究这一类矿物,将必須是把結晶构造与矿物化学組成两方面的工作紧密結合起来。  相似文献   

6.
贡伟亮  赵伟 《矿物学报》1993,13(2):104-108
作者进行了稀土铌钛氢氧化物共沉淀实验,对共沉淀物及其高温灼烧产物进行了XRD、IR、DTA和Raman研究,结合前人高温高压实验结果以及野外地质事实,提出了热液体系复杂氧化物矿物易解石和黑稀金矿的络合物高温水解、氢氧化物共沉淀、脱水去羟、聚合成核和结晶的成因模式。  相似文献   

7.
铌钽矿研究进展和攀西地区铌钽矿成因初探   总被引:12,自引:3,他引:9  
王汾连  赵太平  陈伟 《矿床地质》2012,31(2):293-308
铌钽矿主要产出类型包括伟晶岩型、富Li-F花岗岩型、碱性侵入岩型、碳酸岩型及冲积砂矿型。前2种类型以钽为主,后3种则以铌占主导。铌和钽大多以铌钽独立矿物(铌铁矿、钽铁矿、细晶石、烧绿石等)呈浸染状分布于含矿岩石中,也有部分以类质同象的形式分布于云母、榍石、霓石、钛铁矿等矿物中。关于铌钽矿的富集机制,一些学者认为可由富F-Na和稀有金属(铌、钽等)的花岗质熔体经结晶分异作用形成;另一些学者则根据铌钽矿化与岩石的钠长石化、锂云母化等紧密共生的特点,认为铌钽的富集是岩浆期后流体交代早期形成的花岗岩所致。攀西(攀枝花-西昌)地区的铌钽矿床(化)基本上都是沿着断裂带分布,矿体赋存于印支期碱性岩脉(碱性正长伟晶岩)中,有少数存在于碱性花岗岩中,与区域上邻近的正长岩体及花岗岩体关系密切。其矿石矿物主要为烧绿石、褐钇铌矿等。初步推断,攀西地区的铌钽矿与二叠纪地幔柱活动有关。碱性的正长岩体及花岗岩体与广泛分布的峨眉山玄武岩、辉长岩均是地幔柱岩浆活动的产物,长英质岩体(包括正长岩体和花岗岩体)是富铌钽岩石的母岩体。碱性伟晶岩脉(如炉库和白草地区)是碱性岩浆逐步演化的产物,含矿的碱性花岗岩是花岗质岩浆分异演化的结果。此外,在该地区的铌钽矿床中,铌钽矿物几乎都富集在钠长石化发育的地段,说明后期的热液交代对铌钽的富集也起到了一定作用。因此,攀西地区铌钽的富集是岩浆结晶分异和岩浆期后热液交代共同作用的结果。  相似文献   

8.
华南是我国重要的战略性矿产资源基地,以花岗岩相关的稀有和稀土金属成矿作用而举世瞩目。其中,铌的成矿作用一般与过铝质高分异花岗岩有关,稀土元素则随岩浆演化程度增强而富集程度降低,而江西铁木里含黑云母碱长花岗岩体同时富集铌和稀土元素,矿化组合极具特色。本文在详细的矿物岩相学研究基础上,利用电子探针、飞秒激光电感耦合等离子质谱对铌和稀土矿物进行了矿物地球化学分析,借此对铁木里碱长花岗岩中铌和稀土元素的富集机制进行探讨。铁木里岩体由肉红色含黑云母碱长花岗岩(r-G)和灰白色含黑云母碱长花岗岩(g-G)组成,发育暗色包体。r-G中的铌矿物主要为岩浆期形成的铌铁金红石,稀土矿物包括岩浆期形成的硅钛铈矿、独居石、磷灰石和热液期形成的独居石和氟碳(钙)铈矿。g-G中的铌矿物包括岩浆期形成的铌铁金红石和热液期形成的铌铁金红石、易解石、铌铁矿,稀土矿物包括岩浆期磷灰石和热液期磷灰石、独居石、氟碳(钙)铈矿。暗色包体为岩浆混合成因,内含磷灰石、独居石和零星的硅钛铈矿、金红石。矿物组合特征显示,铁木里碱长花岗岩中的铌和稀土元素经过了岩浆和热液两个时期的富集。应用金红石、磷灰石、绿泥石等矿物成分特征约束了岩浆-...  相似文献   

9.
丁绵绵  车旭东  饶灿  李晓峰  李伟 《地质学报》2023,97(11):3825-3845
稀有金属铌钽在我国华南存在多时代成矿特征,前人对其最晚成矿期晚白垩世成矿事件报道较少。本文以浙东南的吴小垟铌矿床为研究对象,结合野外调查、岩石学、矿物原位微区分析和同位素年代学等研究,确定矿床铌成矿岩体为细粒黑云母花岗岩,成岩成矿年龄分别为89.2±0.8 Ma和86.5±1.0 Ma,揭示了该区存在晚白垩世花岗岩侵位及其相关铌成矿事件。铌除了以独立矿物的形式赋存在铌铁矿、铌铁金红石、铅烧绿石中,还有部分铌赋存于黑云母中。在岩浆-热液作用下,云母类型发生了从铁云母→黑鳞云母→铁锂云母的变化。铁云母Nb含量最高可达1253×10-6,黑鳞云母-铁锂云母铌含量最高至794×10-6,黑云母极度富铌的特征,指示该花岗岩具有非常好的铌找矿潜力,富铌黑云母可以作为一种铌钽找矿指示性矿物。综合上述矿物学特征,得出吴小垟矿床存在两阶段铌成矿事件:岩浆期原生铌铁矿族矿物、原生富铌黑云母和铌铁金红石的形成;以及后期热液作用下铌从岩浆和原生含铌矿物中迁移出形成次生的含铌氧化物。  相似文献   

10.
江西黄山铌(钽)矿床中铌钽矿物的矿物学特征及地质意义   总被引:1,自引:0,他引:1  
江西葛源黄山铌(钽)矿位于赣杭构造带灵山花岗岩体的西侧,矿区内发育黑云母花岗岩、钠长石化花岗岩、萤石石英脉、伟晶岩4种岩性。通过详细的岩相学观察、铌钽矿物的电子探针化学组成、元素面扫描分析,揭示了黄山铌(钽)矿中铌钽的赋存状态及灵山岩体演化与铌钽富集过程的关系。研究结果表明,黄山铌(钽)矿中铌钽矿物主要为铌铁矿和铌铁金红石,铌铁矿交代了早期形成的铌铁金红石,期间发生了如下置换关系:3Ti~(4+)→2(Nb~(5+)+Ta~(5+))+Fe~(2+)。黄山铌(钽)矿主要富Nb,与松树岗铌钽矿相比,含矿岩体中F、Li的质量分数较低。F可以降低固相线温度,延长岩浆结晶分异的时间,增加岩浆的结晶分异程度。Li会增加Nb、Ta的溶解度,但是对Ta的效果更明显。因此,黄山铌(钽)矿的岩浆演化程度低于松树岗铌钽矿,后期岩浆—热液演化阶段的流体作用较弱,导致黄山铌(钽)矿以富Nb为主。  相似文献   

11.
新近发现一种含钡和稀土的氟碳酸盐矿物,经电子探针、矿物化学、X-射线粉品、X-射线能谱、电子衍射、扫瞄电予显微镜和透射电子显微镜等分析,偏光显微镜和反光显微镜光性鉴定,差热分析以及显微硬度、比重和其他物理性质测定,确定是一种新矿物。  相似文献   

12.
程敏清 《地质科学》1981,(3):286-290
关于褐钇铌矿族的研究,国内外积累了不少资料。其主要产在黑云母花岗岩、花岗伟晶岩、微斜长石岩、交代变质岩、蚀变花岗岩、白岗岩及花岗岩的残坡积和冲积砂中。1979年我们在进行内蒙白云鄂博铌、稀土、铁矿床物质成分的研究时,在白云石型铌、稀土矿石中发现含铈褐钇铌矿,与该区原已发现的褐铈铌矿等矿物组成了褐钇铌矿-褐铈铌矿系列。  相似文献   

13.
β—钕褐钇铌矿(Fergusonite-beta-Nd)   总被引:1,自引:0,他引:1       下载免费PDF全文
至今,吐界上已经发现的褐钇铌矿族矿物中仅有钛褐钇铌矿、铈褐钇铌矿、铈-钇-褐钇铌矿……等,而未见有矿物中稀土元素以钕为最富的单斜钕褐钇铌矿的报道[1,4,5]。  相似文献   

14.
Kuranakhite discovered in China for the first time   总被引:4,自引:0,他引:4  
Kuranakhite was firstly discovered in the oxidized zone of the Kuranakh gold mine, southern Russia, and since then there has been no report on it. Kuranakhite in this paper was discovered in the Jialu gold mine, Luonan County, Shaanxi Province. The mineral often occurs as irregular granular aggregates varying from 0. 05 to 0. 25 mm in size. The mineral is light brown to brown in color, translucent, brown in steak, and vitreous in luster. Hv is 231 – 439kg/mm2, HM = 4∼5 and measured density is 6.72(2)g/cm3. Its reflection color is bluishgray to light-blue and it shows middle anisotropism and weak bireflectance. Its polarization color is blue to grayish-brown and there is no internal reflection. The index of refraction is:N a = 2.01,N β = 1. 98,N γ = 1. 96. The average composition is PbO 45. 40 wt %, MnO2 16.41wt%, TeO3 38.10wt%, totalling 99. 91wt%. The empirical formula is Pb0.99Mn0.92 Te1.06O6, which can be simplified as PbMnTeO6. Principal lines in the X-ray power pattern [d(I)(hkl)] are:0.341 (100), (111); 0.2556(60), (130); 0.2043 (50), (041);0.1666 (20), (310); 0.1598(40), (241); and 0.1472(15), (330). It was determined that kuranakhite is orthorhombic; its space group may be C;a = 0.511(1) nm,b = 0.891(2)nm,c = 0.532(l)nm, a:b = 0.57, c:b = 0.60;V = 0.242 (3) nm3;Z = 2, and calculated density = 6.66(1) g/ cm3. This project was financially supported by both the Armed Police Headquarters of Gold Exploration and the Science Foundation of Shaanxi Provincial Educational Commission (No.HJ96-2-4;96JK-026).  相似文献   

15.
氟碳钡铈矿(Cordylite)BaCe2(CO3)3 F2本世纪初首先发现于格陵兰纳尔萨尔苏克(Narssarssuk)的碱性正长伟晶岩脉中,与霓石、氟碳铈钙矿、柱星叶石和碳锶铈矿共生。1965年该矿物又发现于我国白云鄂博西矿区热液交代的元古代白云岩中。1975年,加拿大魁北克省圣赫莱山(Mont st. Hilaire,Quebec)的霞石正长岩中的伟晶岩脉中也发现了这一矿物,它与方沸石、霓石和钠闪石共生。  相似文献   

16.
三家金矿发现Hg—Au—Ag矿物—α—汞金银矿   总被引:1,自引:0,他引:1  
a-汞金银矿是1986年笔者在河北省青龙县三家金矿某富矿带采集的金矿石标本中发现的,见于矿石光片及人工重砂中。经电子探针分析,平均含Ag 41.53%,Au 22.34%,Hg 36.09%,简化化学式为:(Ag,Au)3Hg。其x射线粉晶数据为:2.382(9) (111),2.060(6)(200),1.461(7)(220),1.245(10)(311),1.194(5)(222),与1929年Pabst等人合成的a汞金矿(含Au 82.75%)可以比较,属等轴晶系。笔者确定它为Hg、Au、Ag金属互化物,且是Hg-Au-Ag系列矿物的新变种。  相似文献   

17.
Middendorfite, a new mineral species, has been found in a hydrothermal assemblage in Hilairite hyperperalkaline pegmatite at the Kirovsky Mine, Mount Kukisvumchorr apatite deposit, Khibiny alkaline pluton, Kola Peninsula, Russia. Microcline, sodalite, cancrisilite, aegirine, calcite, natrolite, fluorite, narsarsukite, labuntsovite-Mn, mangan-neptunite, and donnayite are associated minerals. Middendorfite occurs as rhombshaped lamellar and tabular crystals up to 0.1 × 0.2 × 0.4 mm in size, which are combined in worm-and fanlike segregations up to 1 mm in size. The color is dark to bright orange, with a yellowish streak and vitreous luster. The mineral is transparent. The cleavage (001) is perfect, micalike; the fracture is scaly; flakes are flexible but not elastic. The Mohs hardness is 3 to 3.5. Density is 2.60 g/cm3 (meas.) and 2.65 g/cm3 (calc.). Middendorfite is biaxial (?), α = 1.534, β = 1.562, and γ = 1.563; 2V (meas.) = 10°. The mineral is pleochroic strongly from yellowish to colorless on X through brown on Y and to deep brown on Z. Optical orientation: X = c. The chemical composition (electron microprobe, H2O determined with Penfield method) is as follows (wt %): 4.55 Na2O, 10.16 K2O, 0.11 CaO, 0.18 MgO, 24.88 MnO, 0.68 FeO, 0.15 ZnO, 0.20 Al2O3, 50.87 SiO2, 0.17 TiO2, 0.23 F, 7.73 H2O; ?O=F2?0.10, total is 99.81. The empirical formula calculated on the basis of (Si,Al)12(O,OH,F)36 is K3.04(Na2.07Ca0.03)Σ2.10(Mn4.95Fe0.13Mg0.06Ti0.03Zn0.03)Σ5.20(Si11.94Al0.06)Σ12O27.57(OH)8.26F0.17 · 1.92H2O. The simplified formula is K3Na2Mn5Si12(O,OH)36 · 2H2O. Middenforite is monoclinic, space group: P21/m or P21. The unit cell dimensions are a = 12.55, b = 5.721, c = 26.86 Å; β = 114.04°, V = 1761 Å3, Z = 2. The strongest lines in the X-ray powder pattern [d, Å, (I)(hkl)] are: 12.28(100)(002), 4.31(81)(11\(\overline 4 \)), 3.555(62)(301, 212), 3.063(52)(008, 31\(\overline 6 \)), 2.840(90)(312, 021, 30\(\overline 9 \)), 2.634(88)(21\(\overline 9 \), 1.0.\(\overline 1 \)0, 12\(\overline 4 \)), 2.366(76)(22\(\overline 6 \), 3.1.\(\overline 1 \)0, 32\(\overline 3 \)), 2.109(54)(42–33, 42–44, 51\(\overline 9 \), 414), 1.669(64)(2.2.\(\overline 1 \)3, 3.2.\(\overline 1 \)3, 62\(\overline 3 \), 6.1.\(\overline 1 \)3), 1.614(56)(5.0.\(\overline 1 \)6, 137, 333, 71\(\overline 1 \)). The infrared spectrum is given. Middendorfite is a phyllosilicate related to bannisterite, parsenttensite, and the minerals of the ganophyllite and stilpnomelane groups. The new mineral is named in memory of A.F. von Middendorff (1815–1894), an outstanding scientist, who carried out the first mineralogical investigations in the Khibiny pluton. The type material of middenforite has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

18.
Cuprokalininite as an accessory mineral has been found in Cr-V-bearing quartz-diopside metamorphic rock of the Sludyanka Complex, South Baikal region, Russia. This mineral is named as Cu analogue of kalininite (ZnCr2S4), is associated with quartz, Cr-V-bearing tremolite and mica, calcite, diopside-kosmochlor, goldmanite-uvarovite, dravite-chromdravite, Cr-V spinellide, karelianite-eskolaite, V-bearing titanite, pyrite, and plagioclase. Cuprokalininite forms euhedral microcrystals up to 0.05–0.20 mm in size, of octahedral and cuboctahedral habit with faces o {111} and a {100}, and polysynthetic and simple twinning along the {111}. Cleavage and parting were not observed. The mineral is black with a dark bronze tint, black streak, and metallic luster. The microhardness (VHN) is 356–458 (loadings are 20 and 30 g), 396 kgf/mm2, on average. The Mohs hardness is 4.5–5.0, d calc = 4.16(2). In reflected light, the mineral is pale-cream-colored, without anisotropy; reflectance values (λ, nm-R, %): 400-34.3, 420-34.1, 440-33.9, 460-33.7, 480-33.5, 500-33.2, 520-33.0, 540-32.8, 560-32.3, 580-32.2, 600-31.9, 620-31.6, 640-31.2, 660-30.9, 680-30.6, 700-30.4. Cubic, space group Fd [`3]\bar 3 m, Z = 8; unit cell parameter a = 9.814(2) ?, V = 945.2(4) ?3. The strongest lines of the X-ray powder diffraction pattern [d, ? (I) (hkl)]: 3.44 (6)(220), 2.94 (10)(311), 2.44 (6)(400), 1.884 (9)(511, 333), 1.731 (10)(440), 1.133 (6)(751, 555), 1.098 (6)(840), 1.030 (6)(931), 1.002 (10)(844). Chemical composition (mean of 202 microprobe analyses of 11 grains, wt %): Cu 21.03, Fe 0.47, Zn 0.17, Cr 29.01, V 5.85, As 0.21, Sb 0.08, S 43.25; the total is 100.07. The empirical formula calculated on the basis of seven ions is (Cu0.98Fe0.02Zn0.01)1.01(Cr1.65V0.34As0.01)2.00S3.99. The type material has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia.  相似文献   

19.
高平  张流 《地质科学》1982,(3):299-308
近几年来,Y.塔达等人[3-7]建立了一种预测化合物吉布斯生成自由能的经验方法。  相似文献   

20.
Abramovite, a new mineral species, has been found as fumarole crust on the Kudryavy volcano, Iturup Island, Kuriles, Russia. The mineral is associated with pyrrhotite, pyrite, würtzite, galena, halite, sylvite, and anhydrite. Abramovite occurs as tiny elongated lamellar crystals up to 1 mm long and 0.2 mm wide (average 300 × 50 μ m), which make up chaotic intergrowths in the narrow zone of fumarole crust formed at ~600°C. Most crystals are slightly striated along the elongation. The new mineral is silver gray, with a metallic luster and black streak. Under reflected light, abramovite is white with a yellowish gray hue. It has weak bireflectance; anisotropy is distinct without color effects. The chemical composition (electron microprobe) is as follows, wt %: 20.66 S, 0.98 Se, 0.01 Cu, 0.03 Cd, 11.40 In, 12.11 Sn, 37.11 Pb, 17.30 Bi; the total is 99.60. The empirical formula calculated on the basis of 12 atoms is Pb1.92Sn1.09In1.06Bi0.89(S6.90Se0.13)7.03. The simplified formula is Pb2SnInBiS7. The strongest eight lines in the X-ray powder pattern [d, Å (I)(hkl)] are 5.90(36)(100), 3.90(100)(111), 3.84(71)(112), 3.166(26)(114), 2.921(33)(115), 2.902(16)(200), 2.329(15)(214), 2.186(18)(125). The selected area electron diffraction (SAED) patterns of abramovite are quite similar to those of the homologous cylindrite series minerals. The new mineral is characterized by noncommensurate structure composed of regularly alternated pseudotetragonal and pseudohexagonal sheets. The structure parameters determined from the SAED patterns and X-ray powder diffraction data for pseudotetragonal subcell are: a = 23.4(3), b = 5.77(2), c = 5.83(1) Å, α = 89.1(5) °, β = 89.9(7)°, γ = 91.5(7)°, V = 790(8) Å3; for pseudohexagonal subcell: a = 23.6(3), b = 3.6(1), c = 6.2(1) Å, α = 91(2)°, β = 92(1)°, γ = 90(2)°, V = 532(10) Å3. Abramovite is triclinic, space group P(1). The new mineral is named in honor of Russian mineralogist Dmitry Abramov. The type material of abramovite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号