首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flooding is the most costly natural hazard in Europe. Climatic and socioeconomic change are expected to further increase the amount of loss in the future. To counteract this development, policymaking, and adaptation planning need reliable large-scale risk assessments and an improved understanding of potential risk drivers.In this study, recent datasets for hazard and flood protection standards are combined with high resolution exposure projections and attributes of vulnerability derived from open data sources. The independent and combined influence of exposure change and climate scenarios rcp45 and rcp85 on fluvial flood risk are evaluated for three future periods centered around 2025, 2055 and 2085. Scenarios with improved and neglected private precaution are examined for their influence on flood risk using a probabilistic, multivariable flood loss model — BN-FLEMOps — to estimate fluvial flood losses for residential buildings in Europe.The results on NUTS-3 level reveal that urban centers and their surrounding regions are the hotspots of flood risk in Europe. Flood risk is projected to increase in the British Isles and Central Europe throughout the 21st century, while risk in many regions of Scandinavia and the Mediterranean will stagnate or decline. Under the combined effects of exposure change and climate scenarios rcp45, rcp85, fluvial flood risk in Europe is estimated to increase seven-fold and ten-fold respectively until the end of the century. Our results confirm the dominance of socioeconomic change over climate change on increasing risk. Improved private precautionary measures would reduce flood risk in Europe on an average by 15%. The quantification of future flood risk in Europe by integrating climate, socioeconomic and private precaution scenarios provides an overview of risk drivers, trends, and hotspots. This large-scale comprehensive assessment at a regional level resolution is valuable for multi-scale risk-based adaptation planning.  相似文献   

2.
由于正在持续的特大干旱,更频繁的洪水,热浪以及导致空气污染的山火,美国西南部目前正在经历气候危机.这些气候危机主要与水文气候过程相关,尤其是气候系统各圈层之间的水汽通量.本研究主要讨论目前一些水文系统的科学基站以及物理驱动因素,比如北美夏季风以及太平洋北美遥相关.本研究指出降水以及气温对于干旱的相对作用的理论和工具.确定内部变率和外部强迫对于美国西南部水文气候系统的相对作用尤为重要.展望未来,需要研究高分辨率模拟系统,加强降水以及温度对于水文气候系统相对作用的理解,外部强迫的作用以及通过科学家以及其他利益相关者之间的合作.  相似文献   

3.
At the current rate of global warming, the target of limiting it within 2 degrees by the end of the century seems more and more unrealistic. Policymakers, businesses and organizations leading international negotiations urge the scientific community to provide realistic and accurate assessments of the possible consequences of so called “high end” climate scenarios.This study illustrates a novel procedure to assess the future flood risk in Europe under high levels of warming. It combines ensemble projections of extreme streamflow for the current century based on EURO-CORDEX RCP 8.5 climate scenarios with recent advances in European flood hazard mapping. Further novelties include a threshold-based evaluation of extreme event magnitude and frequency, an alternative method to removing bias in climate projections, the latest pan-European exposure maps, and an improved flood vulnerability estimation.Estimates of population affected and direct flood damages indicate that by the end of the century the socio-economic impact of river floods in Europe is projected to increase by an average 220% due to climate change only. When coherent socio-economic development pathways are included in the assessment, central estimates of population annually affected by floods range between 500,000 and 640,000 in 2050, and between 540,000 and 950,000 in 2080, as compared to 216,000 in the current climate. A larger range is foreseen in the annual flood damage, currently of 5.3 B€, which is projected to rise at 20–40 B€ in 2050 and 30–100 B€ in 2080, depending on the future economic growth.  相似文献   

4.
5.
The stability of the Atlantic meridional overturning circulation (MOC) is investigated for various climate scenario runs, using data from the CMIP3 archive of coupled atmosphere-ocean models. Apart from atmospheric feedbacks, the sign of the salt flux into the Atlantic basin that is carried by the MOC determines whether the MOC is in the single or multiple equilibria regime. This salt advection feedback is analyzed by diagnosing the freshwater and salt budgets for the combined Atlantic and Arctic basins. Consistent with the finding that almost all coupled climate models recover from hosing experiments, it is found that most models feature a negative salt advection feedback in their pre-industrial climate: freshwater perturbations are damped by this feedback, excluding the existence of a stable off-state for the MOC. All models feature enhanced evaporation over the Atlantic basin in future climates, but for a moderate increase in radiative forcing (B1 and 2 CO2 scenarios), there is a decrease of the fresh water flux carried by the MOC into the Atlantic (the deficit is made up by increased fresh water transport by the gyre circulation). In this forcing regime the salt advection feedback becomes less negative: for three models from an ensemble of eight it is positive in a 2 CO2 climate, while two models feature a positive feedback in the pre-industrial climate. For even warmer climates (A1B-equilibrium and 4 CO2) the salt feedback becomes more negative (damping) again. It is shown that the decrease in northward fresh water transport at 34°S by the MOC (in B1-equilibrium and 2 CO2) is due to a reduction of the inflow of intermediate waters relative to thermocline waters, associated with a robust shoaling of the MOC in future, warmer climates. In A1B and 4 CO2 climates northward freshwater transport increases again. The MOC keeps shoaling, but both intermediate and thermocline water masses freshen.  相似文献   

6.
Drought analysis in Jordan under current and future climates   总被引:2,自引:0,他引:2  
Droughts have adverse socioeconomic, agricultural, and environmental impacts that can be reduced by assessing and forecasting drought behavior. The paper presents detailed analyses of both meteorological and vegetative droughts over the period from 1970 to 2005. Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) have been used to quantify drought according to severity, magnitude and spatial distribution at the Hashemite Kingdom of Jordan. Results suggest that the country faced during the past 35 years frequent non-uniform drought periods in an irregular repetitive manner. Drought severity, magnitudes and life span increased with time from normal to extreme levels especially at last decade reaching magnitudes of more than 4. Generated NDVI maps spatial analyses estimate crop-area percentage damage due to severe and extremely severe drought events occurred during October, December, and February of 2000 to be about 10%, 45%, and 30%, respectively. In response to drought spatial extent, the paper suggest the presence of two drought types, local drought acting on one or more geographical climatic parts and national drought, of less common but more severe, that extend over the whole country. Droughts in Jordan act intensively during January, February and March and tend to shift position with time by alternative migrations from southern desert parts to northern desert parts and from the eastern desert parts to highlands and Jordan Rift Valley (JRV) at the west. The paper also investigates the potential use of Global Climate Model’s (GCM) to forecast future drought events from 2010 till 2040. Tukey HSD test indicates that ECHAM5OM GCM is capable to predicted rainfall variation at the country and suggests future droughts to become more intensive at the northern and southern desserts with 15% rainfall reduction factor, followed by 10% reduction at the JRV, and 5% at the highlands.  相似文献   

7.
The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland?CScotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.  相似文献   

8.
Role of methane clathrates in past and future climates   总被引:13,自引:0,他引:13  
Methane clathrates are stable at depths greater than about 200 m in permafrost regions and in ocean sediments at water depths greater than about 250 m, provided bottom waters are sufficiently cold. The thickness of the clathrate stability zone depends on surface temperature and geothermal gradient. Average stability zone thickness is about 400 m in cold regions where average surface temperatures are below freezing, 500 m in ocean sediments, and up to 1,500 m in regions of very cold surface temperature (<-15 °C) or in the deep ocean. The concentration of methane relative to water within the zone of stability determines whether or not clathrate will actually occur. The geologic setting of clathrate occurrences, the isotopic composition of the methane, and the methane to ethane plus propane ratio in both the clathrates and the associated pore fluids indicate that methane in clathrates is produced chiefly by anaerobic bacteria. Methane occurrences and the organic carbon content of sediments are the bases used to estimate the amount of carbon currently stored as clathrates. The estimate of about 11,000 Gt of carbon for ocean sediments, and about 400 Gt for sediments under permafrost regions is in rough accord with an independent estimate by Kvenvolden of 10,000 Gt.The shallowness of the clathrate zone of stability makes clathrates vulnerable to surface disturbances. Warming by ocean flooding of exposed continental shelf, and changes in pressure at depth, caused, for example, by sea-level drop, destabilize clathrates under the ocean, while ice-cap growth stabilizes clathrates under the ice cap. The time scale for thermal destabilization is set by the thermal properties of sediments and is on the order of thousands of years. The time required to fix methane in clathrates as a result of surface cooling is much longer, requiring several tens of thousands of years. The sensitivity of clathrates to surface change, the time scales involved, and the large quantities of carbon stored as clathrate indicate that clathrates may have played a significant role in modifying the composition of the atmosphere during the ice ages. The release of methane and its subsequent oxidation to carbon dioxide may be responsible for the observed swings in atmospheric methane and carbon dioxide concentrations during glacial times. Because methane and carbon dioxide are strong infrared absorbers, the release and trapping of methane by clathrates contribute strong feedback mechanisms to the radiative forcing of climate that results from earth's orbital variations.Gordon J. MacDonald is Vice President and Chief Scientist of The MITRE Corporation, 7525 Colshire Drive, McLean, VA 22102.  相似文献   

9.
Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ± 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0–4.9 % net increase in mean global annual rainbow-days (i.e., days with at least one rainbow), with the greatest change under the highest emission scenario. Around 21–34 % of land areas will lose rainbow-days and 66–79 % will gain rainbow-days, with rainbow gain hotspots mainly in high-latitude and high-elevation regions with smaller human populations. Our research demonstrates that alterations to non-tangible environmental attributes due to climate change could be significant and are worthy of consideration and mitigation.  相似文献   

10.
Damages from weather related disasters are projected to increase, due to a combination of increasing exposure of people and assets, and expected changes in the global climate. Only few studies have assessed in detail the potential range of losses in the future and the factors contributing to the projected increase. Here we estimate future potential damage from river flooding, and analyse the relative role of land-use, asset value increase and climate change on these losses, for a case study area in The Netherlands. Projections of future socioeconomic change (land-use change and increase in the value of assets) are used in combination with flood scenarios, projections of flooding probabilities, and a simple damage model. It is found that due to socioeconomic change, annual expected losses may increase by between 35 and 172% by the year 2040, compared to the baseline situation in the year 2000. If no additional measures are taken to reduce flood probabilities or consequences, climate change may lead to an increase in expected losses of between 46 and 201%. A combination of climate and socioeconomic change may increase expected losses by between 96 and 719%. Asset value increase has a large role, as it may lead to a doubling of losses. The use of single loss estimates may lead to underestimation of the impact of extremely high losses. We therefore also present loss–probability curves for future risks, in order to assess the increase of the most extreme potential loss events. Our approach thus allows a more detailed and comprehensive assessment than previous studies that could also be applied in other study areas to generate flood risk projections. Adaptation through flood prevention measures according to currently planned strategies would counterbalance the increase in expected annual losses due to climate change under all scenarios.  相似文献   

11.
Despite decades of research, large multi-model uncertainty remains about the Earth’s equilibrium climate sensitivity to carbon dioxide forcing as inferred from state-of-the-art Earth system models (ESMs). Statistical treatments of multi-model uncertainties are often limited to simple ESM averaging approaches. Sometimes models are weighted by how well they reproduce historical climate observations. Here, we propose a novel approach to multi-model combination and uncertainty quantification. Rather than averaging a discrete set of models, our approach samples from a continuous distribution over a reduced space of simple model parameters. We fit the free parameters of a reduced-order climate model to the output of each member of the multi-model ensemble. The reduced-order parameter estimates are then combined using a hierarchical Bayesian statistical model. The result is a multi-model distribution of reduced-model parameters, including climate sensitivity. In effect, the multi-model uncertainty problem within an ensemble of ESMs is converted to a parametric uncertainty problem within a reduced model. The multi-model distribution can then be updated with observational data, combining two independent lines of evidence. We apply this approach to 24 model simulations of global surface temperature and net top-of-atmosphere radiation response to abrupt quadrupling of carbon dioxide, and four historical temperature data sets. Our reduced order model is a 2-layer energy balance model. We present probability distributions of climate sensitivity based on (1) the multi-model ensemble alone and (2) the multi-model ensemble and observations.  相似文献   

12.
Abstract

A new earth system climate model of intermediate complexity has been developed and its climatology compared to observations. The UVic Earth System Climate Model consists of a three‐dimensional ocean general circulation model coupled to a thermodynamic/dynamic sea‐ice model, an energy‐moisture balance atmospheric model with dynamical feedbacks, and a thermomechanical land‐ice model. In order to keep the model computationally efficient a reduced complexity atmosphere model is used. Atmospheric heat and freshwater transports are parametrized through Fickian diffusion, and precipitation is assumed to occur when the relative humidity is greater than 85%. Moisture transport can also be accomplished through advection if desired. Precipitation over land is assumed to return instantaneously to the ocean via one of 33 observed river drainage basins. Ice and snow albedo feedbacks are included in the coupled model by locally increasing the prescribed latitudinal profile of the planetary albedo. The atmospheric model includes a parametrization of water vapour/planetary longwave feedbacks, although the radiative forcing associated with changes in atmospheric CO2 is prescribed as a modification of the planetary longwave radiative flux. A specified lapse rate is used to reduce the surface temperature over land where there is topography. The model uses prescribed present‐day winds in its climatology, although a dynamical wind feedback is included which exploits a latitudinally‐varying empirical relationship between atmospheric surface temperature and density. The ocean component of the coupled model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model 2.2, with a global resolution of 3.6° (zonal) by 1.8° (meridional) and 19 vertical levels, and includes an option for brine‐rejection parametrization. The sea‐ice component incorporates an elastic‐viscous‐plastic rheology to represent sea‐ice dynamics and various options for the representation of sea‐ice thermodynamics and thickness distribution. The systematic comparison of the coupled model with observations reveals good agreement, especially when moisture transport is accomplished through advection.

Global warming simulations conducted using the model to explore the role of moisture advection reveal a climate sensitivity of 3.0°C for a doubling of CO2, in line with other more comprehensive coupled models. Moisture advection, together with the wind feedback, leads to a transient simulation in which the meridional overturning in the North Atlantic initially weakens, but is eventually re‐established to its initial strength once the radiative forcing is held fixed, as found in many coupled atmosphere General Circulation Models (GCMs). This is in contrast to experiments in which moisture transport is accomplished through diffusion whereby the overturning is reestablished to a strength that is greater than its initial condition.

When applied to the climate of the Last Glacial Maximum (LGM), the model obtains tropical cooling (30°N‐30°S), relative to the present, of about 2.1°C over the ocean and 3.6°C over the land. These are generally cooler than CLIMAP estimates, but not as cool as some other reconstructions. This moderate cooling is consistent with alkenone reconstructions and a low to medium climate sensitivity to perturbations in radiative forcing. An amplification of the cooling occurs in the North Atlantic due to the weakening of North Atlantic Deep Water formation. Concurrent with this weakening is a shallowing of, and a more northward penetration of, Antarctic Bottom Water.

Climate models are usually evaluated by spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. Implicit in this approach is the assumption that the present‐day observations are in equilibrium with the present‐day radiative forcing. The comparison of a long transient integration (starting at 6 KBP), forced by changing radiative forcing (solar, CO2, orbital), with an equilibrium integration reveals substantial differences. Relative to the climatology from the present‐day equilibrium integration, the global mean surface air and sea surface temperatures (SSTs) are 0.74°C and 0.55°C colder, respectively. Deep ocean temperatures are substantially cooler and southern hemisphere sea‐ice cover is 22% greater, although the North Atlantic conveyor remains remarkably stable in all cases. The differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene. It is also demonstrated that a global warming simulation that starts from an equilibrium present‐day climate (cold start) underestimates the global temperature increase at 2100 by 13% when compared to a transient simulation, under historical solar, CO2 and orbital forcing, that is also extended out to 2100. This is larger (13% compared to 9.8%) than the difference from an analogous transient experiment which does not include historical changes in solar forcing. These results suggest that those groups that do not account for solar forcing changes over the twentieth century may slightly underestimate (~3% in our model) the projected warming by the year 2100.  相似文献   

13.
Flood risk will increase in many areas around the world due to climate change and increase in economic exposure. This implies that adequate flood insurance schemes are needed to adapt to increasing flood risk and to minimise welfare losses for households in flood-prone areas. Flood insurance markets may need reform to offer sufficient and affordable financial protection and incentives for risk reduction. Here, we present the results of a study that aims to evaluate the ability of flood insurance arrangements in Europe to cope with trends in flood risk, using criteria that encompass common elements of the policy debate on flood insurance reform. We show that the average risk-based flood insurance premium could double between 2015 and 2055 in the absence of more risk reduction by households exposed to flooding. We show that part of the expected future increase in flood risk could be limited by flood insurance mechanisms that better incentivise risk reduction by policyholders, which lowers vulnerability. The affordability of flood insurance can be improved by introducing the key features of public-private partnerships (PPPs), which include public reinsurance, limited premium cross-subsidisation between low- and high-risk households, and incentives for policyholder-level risk reduction. These findings were evaluated in a comprehensive sensitivity analysis and support ongoing reforms in Europe and abroad that move towards risk-based premiums and link insurance with risk reduction, strengthen purchase requirements, and engage in multi-stakeholder partnerships.  相似文献   

14.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

15.
 The conditions of development of mid-latitude depressions (synoptic eddies) in the winter Northern Hemisphere mid-latitudes at the Last Glacial Maximum (LGM, 21 000 years ago) are very different from the present ones: this period is characterised by a general cooling of the extra-tropics, with massive ice sheets over the Northern Hemisphere continents and sea-ice extending very far south over the North Atlantic. The present work uses regression analysis to study the characteristics of the synoptic eddies in present-day and LGM climate simulations by the Atmospheric General Circulation Model (AGCM) of the UK Universities' Global Atmospheric Programme (UGAMP). In the LGM experiment, the structure of the Pacific eddies is similar to the present-day (PD) situation, but they are weaker. On the other hand, the Atlantic eddies show an increased zonal wavelength and a much shallower structure in the temperature and vertical wind perturbations. To understand the changes of these characteristics from present-day to LGM, we compare them to those computed for the most unstable modes of the corresponding mean flows, determined using a dry primitive equation model. A normal-mode stability analysis is carried both on zonally symmetric and asymmetric flows for each of the Northern Hemisphere storm-tracks. The changes in the most unstable normal modes found by both these analyses give a good account of changes in the structure of the perturbations as retrieved from the AGCM, suggesting that changes in the mean state (especially the temperature gradient) is the main driver of these changes. However in the case of the present-day Atlantic storm-track, the growth rate of these modes is found to be very low compared to the other cases. A complementary analysis evaluates the importance of non-modal growth, in the form of downstream development of perturbations, for each of the storm-tracks. This type of growth is found to be especially important in the case of the present-day Atlantic storm-track. Received: 29 September 1999 / Accepted: 17 November 1999  相似文献   

16.
17.
 We assess two parametrisations of sea-ice in a coupled atmosphere–mixed layer ocean–sea-ice model. One parametrisation represents the thermodynamic properties of sea-ice formation alone (THERM), while the other also includes advection of the ice (DYN). The inclusion of some sea-ice dynamics improves the model's simulation of the present day sea-ice cover when compared to observations. Two climate change scenarios are used to investigate the effect of these different parametrisations on the model's climate sensitivity. The scenarios are the equilibrium response to a doubling of atmospheric CO2 and the response to imposed glacial boundary conditions. DYN produces a smaller temperature response to a doubling of CO2 than THERM. The temperature response of THERM is more similar to DYN in the glacial case than in the 2×CO2 case which implies that the climate sensitivity of THERM and DYN varies with the nature of the forcing. The different responses can largely be explained by the different distribution of Southern Hemisphere sea-ice cover in the control simulations, with the inclusion of ice dynamics playing an important part in producing the differences. This emphasises the importance of realistically simulating the reference climatic state when attempting to simulate a climate change to a prescribed forcing. The simulated glacial sea-ice cover is consistent with the limited palaeodata in both THERM and DYN, but DYN simulates a more realistic present day sea-ice cover. We conclude that the inclusion of simple ice dynamics in our model increases our confidence in the simulation of the anomaly climate. Received: 24 May 2000 / Accepted: 25 October 2000  相似文献   

18.
 The diurnal range of surface air temperature (rT a ) simulated for present and doubled CO2 climates by the CSIRO9 GCM is analysed. Based on mean diurnal cycles of temperature and surface heat fluxes, a theory for understanding the results is developed. The cycles are described as the response to a diurnal forcing which is represented well by the diurnal mean flux of net shortwave radiation at the surface (SW) minus the evaporative (E) and sensible (H) fluxes. The response is modified by heat absorbed by the ground, and by the cycle in downward longwave (LW) radiation, but these effects are nearly proportional to the range in surface temperature. Thus in seasonal means, rT a is approximately given by SWEH divided by 6 W m-2/°C. A multiple regression model for (rT a ) is developed, based on quantities known to influence SW, E and H, and applied to both spatial variation in seasonal means, and day-to-day variation at a range of locations. In both cases, rT a is shown to be influenced by cloud cover, snow extent and wind speed. It is influenced by soil moisture, although this effect is closely tied to that of cloud. In seasonal means rT a is also well correlated with precipitable water, apparently because of the latter’s influence on E+H. The regression model describes well the spatial variation in the doubled CO2 change in rT a . The annual mean change in rT a over land on doubling CO2 was −0.36 °C, partly because of a decrease in the mean diurnal forcing (as defined in the theory), but also apparently because of the effect of nonlinearity in T s of the upward longwave emission. A diagnostic radiation calculation indicates that the CO2 and water vapour provide a small increase in rT a through the downward LW response, which partially counters a decrease due to a reduction of SW by the gases. Received: 8 November 1995 / Accepted: 3 January 1997  相似文献   

19.
20.
Summary ?Monthly precipitation data from the Global Historical Climatology Network for 42 stations in Morocco and its vicinity are investigated with respect to baroclinicity, storm track and cyclone activity, moisture transports, North Atlantic Oscillation (NAO) variations, and different circulation types by means of correlation and composite studies. The results are related to a climate change scenario from an ECHAM4/OPYC3 transient greenhouse gas only (GHG) simulation. Precipitation in northwestern Morocco shows a clear link to the baroclinic activity over the North Atlantic during boreal winter (DJF). In large precipitation months the North Atlantic storm track is shifted southward, more westerly and northwesterly circulation situations occur and moisture transports from the Atlantic are enhanced. The occurrence of local cyclones and upper-level troughs is more frequent than in low precipitation months. The negative correlation to the NAO is relatively strong, especially with Gibraltar as a southern pole (−0.71). The northward shift of the storm track and eastward shift of the Azores High predicted by the ECHAM model for increasing GHG concentrations would therefore be associated with decreasing precipitation and potentially serious impacts for the future water supply for parts of Morocco. In the region south of the Atlas mountains, moisture transports from the Atlantic along the southern flank of the Atlas Mountains associated with cyclones west of Morocco and the Iberian Peninsula can be identified as a decisive factor for precipitation. Northeastern Morocco and Northwestern Algeria, however, is rather dominated by the influence of cyclones over the Western Mediterranean that are associated with a strong northwesterly moisture transport. As both regions appear to be less dependent on the North Atlantic storm track and more on local processes, a straight forward interpretation of the large-scale changes predicted by the ECHAM4/OPYC3 cannot be done without the application of down-scaling methods in the future. Received July 19, 2001; revised May 31, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号