首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most existing satellite relative motion theories utilize mean elements, and therefore cannot be used for calculating long-term bounded perturbed relative orbits. The goal of the current paper is to find an integrable approximation for the relative motion problem under the J 2 perturbation, which is adequate for long-term prediction of bounded relative orbits with arbitrary inclinations. To that end, a radial intermediary Hamiltonian is utilized. The intermediary Hamiltonian retains the original structure of the full J 2 Hamiltonian, excluding the latitude dependence. This formalism provides integrability via separation, a fact that is utilized for finding periodic relative orbits in a local-vertical local-horizontal frame and determine an initialization scheme that yields long-term boundedness of the relative distance. Numerical experiments show that the intermediary-based computation of orbits provides long-term bounded orbits in the full J 2 problem for various inclinations. In addition, a test case is shown in which the radial intermediary-based initial conditions of the chief and deputy satellites yield bounded relative distance in a high-precision orbit propagator.  相似文献   

2.
The motion of a point mass in the J 2 problem has been generalized to that of a rigid body in a J 2 gravity field for new high-precision applications in the celestial mechanics and astrodynamics. Unlike the original J 2 problem, the gravitational orbit-rotation coupling of the rigid body is considered in the generalized problem. The existence and properties of both the classical and non-classical relative equilibria of the rigid body are investigated in more details in the present paper based on our previous results. We nondimensionalize the system by the characteristic time and length to make the study more general. Through the study, it is found that the classical relative equilibria can always exist in the real physical situation. Numerical results suggest that the non-classical relative equilibria only can exist in the case of a negative J 2, i.e., the central body is elongated; they cannot exist in the case of a positive J 2 when the central body is oblate. In the case of a negative J 2, the effect of the orbit-rotation coupling of the rigid body on the existence of the non-classical relative equilibria can be positive or negative, which depends on the values of J 2 and the angular velocity Ω e . The bifurcation from the classical relative equilibria, at which the non-classical relative equilibria appear, has been shown with different parameters of the system. Our results here have given more details of the relative equilibria than our previous paper, in which the existence conditions of the relative equilibria are derived and primarily studied. Our results have also extended the previous results on the relative equilibria of a rigid body in a central gravity field by taking into account the oblateness of the central body.  相似文献   

3.
High-order analytical solutions of invariant manifolds, associated with Lissajous and halo orbits in the elliptic restricted three-body problem (ERTBP), are constructed in this paper. The equations of motion of ERTBP in the pulsating synodic coordinate system have five equilibrium points, and the three collinear libration points as well as the associated center manifolds are unstable. In our calculation, the general solutions of the invariant manifolds associated with Lissajous and halo orbits around collinear libration points are expressed as power series of five parameters: the orbital eccentricity, two amplitudes corresponding to the hyperbolic manifolds, and two amplitudes corresponding to the center manifolds. The analytical solutions up to arbitrary order are constructed by means of Lindstedt–Poincaré method, and then the center and invariant manifolds, transit and non-transit trajectories in ERTBP are all parameterized. Since the circular restricted three-body problem (CRTBP) is a particular case of ERTBP when the eccentricity is zero, the general solutions constructed in this paper can be reduced to describe the dynamics around the collinear libration points in CRTBP naturally. In order to check the validity of the series expansions constructed, the practical convergence of the series expansions up to different orders is studied.  相似文献   

4.
The goal of this paper is to provide a model for binary-binary interactions in star clusters, which is based on simultaneous binary collision of a special case of the one-dimensional 4-body problem where four masses move symmetrically about the center of mass. From the theoretical point of view, the singularity due to binary collisions between point masses can be handled by means of regularization theory. Our main tool is a change of coordinates due to McGehee by which we blow-up the singular set associated to total collision and replace it with an invariant manifold which includes binary and simultaneous binary collisions, and then gain a complete picture of the local behavior of the solutions near to total collision via the homothetic orbit.  相似文献   

5.
Assuming that the potential field on the plane of symmetry of a nearly axisymmetric galaxy is a polynomial of the fourth degree, we study the conditions of existence and stability of the main types of periodic orbits. We verify the theoretical results by numerical calculations.  相似文献   

6.
The 2/1 resonant dynamics of a two-planet planar system is studied within the framework of the three-body problem by computing families of periodic orbits and their linear stability. The continuation of resonant periodic orbits from the restricted to the general problem is studied in a systematic way. Starting from the Keplerian unperturbed system, we obtain the resonant families of the circular restricted problem. Then, we find all the families of the resonant elliptic restricted three-body problem, which bifurcate from the circular model. All these families are continued to the general three-body problem, and in this way we can obtain a global picture of all the families of periodic orbits of a two-planet resonant system. The parametric continuation, within the framework of the general problem, takes place by varying the planetary mass ratio ρ. We obtain bifurcations which are caused either due to collisions of the families in the space of initial conditions or due to the vanishing of bifurcation points. Our study refers to the whole range of planetary mass ratio values  [ρ∈ (0, ∞)]  and, therefore we include the passage from external to internal resonances. Thus, we can obtain all possible stable configurations in a systematic way. As an application, we consider the dynamics of four known planetary systems at the 2/1 resonance and we examine if they are associated with a stable periodic orbit.  相似文献   

7.
We use the analytical method of Lindstedt to make an inventory of the regular families of periodic orbits and to obtain approximate analytical solutions in a three-dimensional harmonic oscillator with perturbing cubic terms. We compare these solutions to the results of numerical computations at a specific orbital resonance.  相似文献   

8.
9.
《Planetary and Space Science》2007,55(10):1299-1309
We investigate a planetary model in spherical symmetry, which consists of a solid core and an envelope of ideal and isothermal gas, embedded in a gaseous nebula. The model equations describe equilibrium states of the envelope. So far, no analytical expressions for their solutions exist, but of course, numerical results have been computed. The point of critical mass, above which no more static solutions for the envelope exist, could not be determined analytically until now. We derive explicit formulas for the core mass and the gas density at the core surface, for the point of critical mass. The critical core mass is also an indicator for the ability of a core to keep its envelope when the surrounding nebula is removed, because at this point, the core's influence extends up to the outer boundary at the Hill radius.  相似文献   

10.
It is generally accepted that structure formed in the matter dominated Universe, for obvious reasons. In this paper, we would like to suggest an alternate theory: that structure could have formed in the radiation dominated Universe if it was protected from destruction. This protection is envisioned as a crystal, of sorts, made up of primordial black holes (PBH's), which form a cavitation into which any matter particles in the nucleosynthesis period of the Universe (around 100 seconds after the Big Bang) could have taken refuge. A sort of oasis in a sea of radiation. Such a scenario could solve several problems in cosmology, namely: how matter got a foot-hold over anti-matter in the Universe; the structure/galaxy formation problem; and possibly suggest ideas on the gamma-ray count and distribution.  相似文献   

11.
We study the existence of three-dimensional symmetric orbits in a magnetic-binary system. We point out that only two kinds of such orbits exist, depending on the orientation of both magnetic momentsM i,i=1, 2; one with respect to the plane,y=0 and one with respect to thex-axis of the rotating-coordinate system.  相似文献   

12.
13.
Man Hoi Lee  S.J. Peale 《Icarus》2006,184(2):573-583
Two small satellites of Pluto, S/2005 P1 (hereafter P1) and S/2005 P2 (hereafter P2), have recently been discovered outside the orbit of Charon, and their orbits are nearly circular and nearly coplanar with that of Charon. Because the mass ratio of Charon-Pluto is ∼0.1, the orbits of P2 and P1 are significantly non-Keplerian even if P2 and P1 have negligible masses. We present an analytic theory, with P2 and P1 treated as test particles, which shows that the motion can be represented by the superposition of the circular motion of a guiding center, the forced oscillations due to the non-axisymmetric components of the potential rotating at the mean motion of Pluto-Charon, the epicyclic motion, and the vertical motion. The analytic theory shows that the azimuthal periods of P2 and P1 are shorter than the Keplerian orbital periods, and this deviation from Kepler's third law is already detected in the unperturbed Keplerian fit of Buie and coworkers. In this analytic theory, the periapse and ascending node of each of the small satellites precess at nearly equal rates in opposite directions. From direct numerical orbit integrations, we show the increasing influence of the proximity of P2 and P1 to the 3:2 mean-motion commensurability on their orbital motion as their masses increase within the ranges allowed by the albedo uncertainties. If the geometric albedos of P2 and P1 are high and of order of that of Charon, the masses of P2 and P1 are sufficiently low that their orbits are well described by the analytic theory. The variation in the orbital radius of P2 due to the forced oscillations is comparable in magnitude to that due to the best-fit Keplerian eccentricity, and there is at present no evidence that P2 has any significant epicyclic eccentricity. However, the orbit of P1 has a significant epicyclic eccentricity, and the prograde precession of its longitude of periapse with a period of 5300 days should be easily detectable. If the albedos of P2 and P1 are as low as that of comets, the large inferred masses induce significant short-term variations in the epicyclic eccentricities and/or periapse longitudes on the 400-500-day timescales due to the proximity to the 3:2 commensurability. In fact, for the maximum inferred masses, P2 and P1 may be in the 3:2 mean-motion resonance, with the resonance variable involving the periapse longitude of P1 librating. Observations that sample the orbits of P2 and P1 well on the 400-500-day timescales should provide strong constraints on the masses of P2 and P1 in the near future.  相似文献   

14.
We study symmetric relative periodic orbits in the isosceles three-body problem using theoretical and numerical approaches. We first prove that another family of symmetric relative periodic orbits is born from the circular Euler solution besides the elliptic Euler solutions. Previous studies also showed that there exist infinitely many families of symmetric relative periodic orbits which are born from heteroclinic connections between triple collisions as well as planar periodic orbits with binary collisions. We carry out numerical continuation analyses of symmetric relative periodic orbits, and observe abundant families of symmetric relative periodic orbits bifurcating from the two families born from the circular Euler solution. As the angular momentum tends to zero, many of the numerically observed families converge to heteroclinic connections between triple collisions or planar periodic orbits with binary collisions described in the previous results, while some of them converge to “previously unknown” periodic orbits in the planar problem.  相似文献   

15.
16.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

17.
The long-term effects of a distant third-body on a massless satellite that is orbiting an oblate body are studied for a high order expansion of the third-body disturbing function. This high order may be required, for instance, for Earth artificial satellites in the so-called MEO region. After filtering analytically the short-period angles via averaging, the evolution of the orbital elements is efficiently integrated numerically with very long step-sizes. The necessity of retaining higher orders in the expansion of the third-body disturbing function becomes apparent when recovering the short-periodic effects required in the computation of reliable osculating elements.  相似文献   

18.
Within the framework of the restricted three-body problem, the possible orbits of a small-mass exoplanet in the system with a massive exoplanet on an elliptic orbit are investigated. Possible quasi-circular orbits are sought. The dependence of the Kozdai-Lidov effect (the Kozdai resonance) on the eccentricity of the orbit of a massive planet is discussed. The effect of the commensurabilities of the mean motions on the value of the eccentricity perturbations is considered.  相似文献   

19.
It is proposed to improve the convergence of the determination of the elements of the orbits of visual binaries by using not only first, but second-order derivatives in the development of the appropriate equations of condition. Also, some improvements of the Kowalsky-Seeliger method are suggested which improve the accuracy of the orbit used as first approximation.  相似文献   

20.
The dynamic evolution of sun-synchronous orbits at a time interval of 20 years is considered. The numerical motion simulation has been carried out using the Celestial Mechanics software package developed at the Institute of Astronomy of the University of Bern. The dependence of the dynamic evolution on the initial value of the ascending node longitude is examined for two families of sun-synchronous orbits with altitudes of 751 and 1191 km. Variations of the semimajor axis and orbit inclination are obtained depending on the initial value of the ascending node longitude. Recommendations on the selection of orbits, in which spent sun-synchronous satellites can be moved, are formulated. Minimal changes of elements over a time interval of 20 years have been observed for orbits in which at the initial time the angle between the orbit ascending node and the direction of the Sun measured along the equator have been close to 90° or 270°. In this case, the semimajor axis of the orbit is not experiencing secular perturbations arising from the satellite’s passage through the Earth’s shadow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号