首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海洋环境中的厌氧氨氧化细菌与厌氧氨氧化作用   总被引:1,自引:0,他引:1  
厌氧氨氧化是细菌在厌氧条件下将氨氮氧化成氮气的过程,主要应用在污水处理反应器中,最近几年发现在海洋环境中也广泛存在,并在海洋氮循环过程中发挥了重要作用,代表了海洋中一个巨大的氮汇,对碳循环和全球气候变化也有重要影响.梯烷膜脂结构独特,是厌氧氨氧化细菌的化学生物标志物,具有化学分类与古海洋学应用潜力.厌氧氨氧化作用及厌氧...  相似文献   

2.
厌氧氨氧化是细菌在厌氧条件下将氨氮氧化成氮气的过程,主要应用在污水处理反应器中,最近几年发现在海洋环境中也广泛存在,并在海洋氮循环过程中发挥了重要作用,代表了海洋中一个巨大的氮汇,对碳循环和全球气候变化也有重要影响。梯烷膜脂结构独特,是厌氧氨氧化细菌的化学生物标志物,具有化学分类与古海洋学应用潜力。厌氧氨氧化作用及厌氧氨氧化细菌已成为海洋生物地球化学、微生物学、有机地球化学等研究领域的热点。  相似文献   

3.
海洋生境来源的甲烷好氧氧化菌及其产生的甲烷氧化作用是否具有独特性,对氧浓度这一环境因子如何响应,目前尚不清楚。本文采用海底新鲜沉积物作为菌种来源,借助微生物培养技术,实验研究了不同氧浓度条件(0%、1%、10%和50%)下的甲烷好氧氧化过程。结果表明,完全无氧条件(0%)不能发生甲烷好氧氧化作用,实验体系的甲烷氧化速率及甲烷氧化菌总丰度随氧浓度升高而降低,当氧浓度由1%升高至50%时,甲烷氧化速率减弱了约15倍,甲烷氧化菌总丰度降低了两个数量级。甲烷氧化菌优势菌属为I型氧化菌Methylobacter属,由Methylobacter leteus和Methylobacter whittenburyi组成,氧浓度增加时Methylobacter leteus的占比随之降低,Methylobacter whittenburyi则相反。本实验中甲烷好氧氧化菌及其氧化作用的最适氧浓度条件为1%,这与采样位置的原始生存环境最为接近。在海底低氧条件叠加低温、高压等特殊生境的长期驯化下,甲烷氧化菌的最适氧浓度条件将逐渐趋于其原始生存环境。  相似文献   

4.
5.
The selectivity of amino acid assimilation by marine bacteria was examined using seven kinds of14C-amino acids and the acid hydrolysate of14C-labelled proteins. It was found that the net assimilation and respiration by marine bacteria followed MICHAELIS-MENTEN kinetics for all of amino acids used in our experiments. Maximum velocities of amino acids were 0.01 to 0.19g carbon/hour per 2×107 cells for net assimilation and less than 0.18g carbon/hour per 2×107 cells for respiration at 20C. The velocity of gross assimilation was found with the following order: phenylalanine>valine, glutamic acid>serine, arginine>tryptophan>glycine. The assimilation velocities of amino acids in these laboratory works showed almost the same order as those in field experiments. The assimilation velocity of an amino acid was influenced by coexisting another amino acids or glucose. The assimilation velocity in lower substrate range of amino acids was directly proportional to the number of bacterial cells in the range from 6×102 to 3×104 cells per ml. No linear relation between the assimilation velocity of amino acids and reciprocal of absolute temperature was found, but a marked bending was observed at 15 to 20C. The velocity at the optimum temperature was three to six times of that at 5C.  相似文献   

6.
A continuous flow method for the determination of ammonium concentration in seawater from a nanomolar to a micromolar level is described. To prevent spurious peaks derived from salinity difference, a gas-permeable hydrophobic membrane filter was used to separate the manifold into an outgassing section and an indophenol blue reaction section. The indophenol blue reaction section was adopted for colorimetric analysis and is equipped with a 1-m path length liquid capillary cell and a fiber-optic spectrometer, which is able to record the absorbance at multiple wavelengths. The minimum detection limit at wavelength 630 nm is 5.5 ± 1.8 nM, and the calibration curves are linear to at least 2,000 nM. In addition, the minimum detection limit at wavelength 530 nm was 13 ± 5.3 nM, and linear calibration curves were observed until at least 10,000 nM. The slopes of the calibration curves were similar for standards prepared using filtered seawater and ultrapure water. The ammonium concentration of the ultrapure water was similar to those of ion-exchanged water and unfiltered low-nutrient seawater, but was significantly lower than those of filtered seawater and solutions that contained sodium hydroxide. Therefore, ultrapure water is optimal for both blank and standard preparations because of its stable quality and availability. Given its large concentration range and the use of readily available blanks, this method is suitable for the determination of ammonium concentration and helps our understanding of ammonium dynamics in the ocean.  相似文献   

7.
南海中部海域铵浓度及其与浮游植物的关系   总被引:2,自引:0,他引:2  
杨嘉东 《台湾海峡》1993,12(4):369-375
本文根据1983年9月至1985年1月南海中部海域调查的资料,分析了该海区海水中铵浓度的频率分布,垂直分布特征和次表层铵最大值的形成及其与环境因子的关系。结果表明,铵浓度变化范围在0-2.71μmol/dm^3之间,铵含量小于0.5μmol/dm^3的样品数约为样品总数的78%,铵最大值出现在表层和次表层机率较大。文中还对该海域表层的铵含量与浮游植物的关系进行了初步探讨。  相似文献   

8.
淤泥质潮流深槽最大冲刷深度的一个概念模型   总被引:2,自引:1,他引:2  
以概念模式方法计算了淤泥质潮流深槽的最大深度,探讨了涨落潮流速、涨落潮历时、深槽淤泥质物质粒径、深槽顶底部原始深度、水道长度等因素对潮流深槽最大深度的影响。概念模式的假设条件是:(1)深槽形态为长方体,底部纵向坡度为0;(2)沉积物粒径无垂向变化;(3)只考虑潮流作用的影响,涨、落潮流速在时间序列上呈正弦分布;(4)不考虑细颗粒物质的粘性和絮凝作用。模拟结果显示:(1)涨、落潮历时对深槽最大深度的影响很小。(2)优势潮流流速与最大深槽深度之间存在着幂函数关系。(3)深槽的底质粒径、深槽的长度均与最大冲刷深度呈正相关关系。(4)深槽顶部水深与最大深度呈负相关关系。(5)由于潮汐水道深度与潮流流速和沉积物侵蚀强度之间具有负反馈关系,因此水道冲刷存在着一个极限,即最终可以达到均衡状态。潮流深槽的均衡态特征和达到均衡态所需的时间可运用沉积动力学方法来确定;同时,若应用深槽的真实参数,进一步减少模型的假设条件,可望使该模型具有实际的应用价值。  相似文献   

9.
To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model (FIO-ESM) climate forecast system, satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) are assimilated into this system, using the method of localized error subspace transform ensemble Kalman ?lter (LESTKF). Five-year (2014–2018) Arctic sea ice assimilation experiments and a 2-month near-real-time forecast in August 2018 were conducted to study the roles of ice data assimilation. Assimilation experiment results show that ice concentration assimilation can help to get better modeled ice concentration and ice extent. All the biases of ice concentration, ice cover, ice volume, and ice thickness can be reduced dramatically through ice concentration and thickness assimilation. The near-real-time forecast results indicate that ice data assimilation can improve the forecast skill significantly in the FIO-ESM climate forecast system. The forecasted Arctic integrated ice edge error is reduced by around 1/3 by sea ice data assimilation. Compared with the six near-real-time Arctic sea ice forecast results from the subseasonal-to-seasonal (S2S) Prediction Project, FIO-ESM climate forecast system with LESTKF ice data assimilation has relatively high Arctic sea ice forecast skill in 2018 summer sea ice forecast. Since sea ice thickness in the PIOMAS is updated in time, it is a good choice for data assimilation to improve sea ice prediction skills in the near-real-time Arctic sea ice seasonal prediction.  相似文献   

10.
I present here a review of my work concerning nitrogen assimilation by marine phytoplankton. This opportunity was provided to me as the recipient of the Okada Prize for 1990 from the Oceanographical Society of Japan. Assimilation of nitrogenous nutrients by phytoplankton has received considerable research effort since it is an essential process in organic matter production in the sea surface. The use of15N technique is necessary for tracing nitrogen assimilation by natural marine phytoplankton, but nitrogen metabolism of heterogenous natural populations significantly complicates flow of isotope. Dilution of15N isotope by heterotrophic regeneration of ammonium causes underestimates of uptake rates. I made an evaluation of isotope dilution effects in available data sets of15N-ammonium uptake experiments in literature. Incorporated15N in particulates might revert back to dissolved organic or inorganic nitrogen. I conducted pulse-chase experiments which can quantify such loss of tracer. From these studies, a short term experiment with sufficient amount of tracer enrichment is found to overwhelm these problems. In such an experiment, however, the elevation of nutrient concentration by tracer addition may likely perturb the uptake process. An initial rapid uptake is expected if the population is nitrogen deficient, but I found that this phenomenon is not common to surface oligotrophic open oceans. Uptake rate from such an experiment, or capacity of nitrogen uptake, was obtained using surface waters from an extended area in the North Pacific, and its regional variability was discussed. In addition to overall15N uptake, time series analysis of intracellular15N partitioning between hot ethanol soluble and insoluble fractions was found to be useful. When15N-ammonium is added to nitrogen deficient cells of phytoplankton,15N is accumulated in the ethanol soluble fraction. Using cultured strains of marine phytoplankton, this accumulation was proved to be caused by the difference of rates of nitrogen uptake and nitrogenous macromolecule synthesis. Uptake rate per cell is relatively constant irrespective of nutritional status, but macromolecule synthesis decreases with nitrogen deficiency. This accumulation of15N in the ethanol soluble fraction was used as an index of nutritional status with respect to nitrogen of the natural populations of phytoplankton from the western North Pacific. The uptake capacity of nitrate was observed to be higher than that of ammonium in the regional upwelling around Izu Islands and during the spring bloom in Alaskan coastal water. The15N partitioning technique revealed that nitrate taken up was rapidly incorporated in the macromolecule fraction. This suggests that ammonium uptake is suppressed to be smaller than intracellular nitrogen assimilation, rather than that nitrate is taken up in excess and accumulates within the cell. Regulation of nitrate uptake by light intensity was also discussed in detail for the Alaskan data. Several other studies currently conducted are also mentioned.  相似文献   

11.
Natural assemblages of marine bacteria were chosen in a batch culture experiments. The impact of varying nitrogen substrate concentrations and the substrate C:N ratios (C:NS) on the bacterial C:N ratio (C:NB), the bacterial growth efficiency (BGE) and ammonium regeneration was mainly examined. The C:NS ratios varied from 5:1 (carbon limitation) to 40:1 (nitrogen limitation) with varying combinations of glucose and NO3-. The C:NB ratio had positive relationship with the C:NS ratio (r=0.93, n=8), whose value was 3.77 when the C:NS ratio was 5:1 but increased to 6.47 when the C:NS ratio was 40:1. These results indicate that the C:NB ratio is a potential diagnostic tool for determining the bacterial growth in natural waters controlled by either, carbon or nitrogen. BGE decreased with the declining nitrate concentration and negatively related to C:Ns (r=-0.51, n=8). The average value of BGE was 0.20. This value was a little lower than other reports, which could be induced by the nitrogen source used in our experiments. Finally, regeneration time of ammonium delayed with the increasing C:NS ratio, which indicates that there were different metabolism mechanisms when bacterial growth was limited by carbon source and nitrogen source.  相似文献   

12.
海洋沉积物中大部分甲烷会通过甲烷厌氧氧化作用(anaerobic oxidation of methane, AOM)而被消耗。早期研究表明,AOM可与硫酸盐、硝酸盐和亚硝酸盐的还原作用相耦合,从而有效减少甲烷向大气的排放。最近,金属依赖型AOM(metal-AOM,活性金属氧化物还原反应驱动的AOM)被证实存在于自然界沉积物和富集培养的样品中。但是,目前仍未从自然海洋环境中分离获得能够介导metal-AOM的微生物。对海洋沉积物中metal-AOM的研究大多聚焦于热液或冷泉等海洋特殊生境,一系列研究表明地质流体在这些海底化能自养生态系统的维持和演化方面起到了重要作用,并深刻影响全球地球化学循环,因此,该科学问题研究吸引了越来越多的注意力。本文讨论了可能参与海洋沉积物中metal-AOM的微生物类群及其地球化学证据,并在前人工作基础上,以冲绳海槽冷泉-热液共生区为例,提出一种新的metal-AOM作用机制。认为在全球冷泉-热液系统相互作用地区的调查有助于更好地探讨metal-AOM的发生机制及微生物在深海生境中分布的连通性问题。  相似文献   

13.
Rates for nitrification, phytoplankton uptake of ammonium, and regeneration of ammonium were measured in the Delaware River as functions of irradiance and nutrient concentrations, using 15N labeling methods. Phytoplankton uptake increased and nitrification rates declined with increased light intensity. The irradiance level required for maximum uptake by phytoplankton was similar to that for maximal inhibition of nitrification (about 300μEm−2 s−1). Daily, water-column averaged rates, calculated by integration of the observed rate-intensity relationships, indicate that light plays a key role in regulating the balance between oxidation of NH4+ by bacteria and assimilation by phytoplankton in the Delaware. The results show that uptake of ammonium by phytoplankton in the dark may exceed uptake in the light in optically thick systems.  相似文献   

14.
利用15 N示踪法实测南海水体反硝化速率的研究发现,培养水样在长时间密闭放置过程中也会受到外界空气的污染,且其29N2/28N2比值恒定为0.007 35。根据空气背景中29N2/28N2比值恒定的特征,提出基于质量平衡关系校正空气N2污染的方法,通过将样品实测29N2浓度扣除由外界空气贡献的29N2浓度,可获得由生物反硝化作用所产生的29N2准确浓度,进而可计算出准确的反硝化速率。经空气29N2背景校正后,29N2浓度的偏差明显小于未经校正的结果,且29N2浓度与培养时间之间的线性相关性显著加强,凸显出空气29N2背景校正是获取准确反硝化速率的关键。鉴于15 N示踪法已被广泛应用于海洋水体与沉积物反硝化速率的测定中,所提出的空气29N2背景校正方法具有重要的意义。  相似文献   

15.
中太平洋海山富钴结壳与基岩关系的研究   总被引:13,自引:5,他引:13  
对我国首次取得的中太平洋海山基岩和富钴结壳样品的结构构造、矿物和化学组成特征的研究表明,该区主要基岩类型为碱性玄武岩、磷块岩、磷酸盐化碳酸盐岩和燧石等,碱性玄武岩分布最广,并均有不同程度的风化.观察表明,富钴结壳的载体可以是各种岩性的基岩.玄武岩、风化火山岩和磷块岩上的结壳厚度比燧石的大,有较高的经济价值,是选矿冶炼的主要对象.对于调查区内富钴结壳形态总体上可分为三种类型:板状、砾状和结核状结壳.从以下四个方面探讨结壳与基岩之间的关系:(1)海水、基岩和结壳中主要金属元素含量特点;(2)通过聚类分析方法探讨结壳与基岩之间的亲疏程度;(3)结壳的分布特征;(4)不同基岩类型对结壳生长的影响.分析结果表明,调查区内的火山岩及磷块岩对结壳形成的贡献大(比其他类型岩石).  相似文献   

16.
海洋环境中平台钢腐蚀速率的三层BP神经网络预测   总被引:3,自引:0,他引:3  
利用三层BP神经网络预测海洋环境因素对材料的腐蚀速率的影响。结合实测的pH值、温度、溶解氧、盐度、生物附着等影响因素,分析了上述环境因素对平台钢腐蚀的影响,建立环境因素与腐蚀速率之间的映射关系,预测了平台钢在海洋环境中的腐蚀速率。结果表明,全浸区腐蚀速率预测误差为6.95%,潮差带腐蚀速率预测误差为4.2%,预测精度较高。说明利用三层BP神经网络预测钢在海水中腐蚀速率技术可行,具有较高的预测精度和应用价值。  相似文献   

17.
The elevated levels of primary productivity associated with eastern boundary currents are driven by nutrient- rich waters upwelled from depth, such that these regions are typically characterised by high rates of nitrate-fuelled phytoplankton growth. Production studies from the southern Benguela upwelling system (SBUS) tend to be biased towards the summer upwelling season, yet winter data are required to compute annual budgets and understand seasonal variability. Net primary production (NPP) and nitrate and ammonium uptake were measured concurrently at six stations in the SBUS in early winter. While euphotic zone NPP was highest at the stations nearest to the coast and declined with distance from the shore, a greater proportion was potentially exportable from open-ocean surface waters, as indicated by the higher specific nitrate uptake rates and f-ratios (ratio of nitrate uptake to total nitrogen consumption) at the stations located off the continental shelf. Near the coast, phytoplankton growth was predominantly supported by ammonium despite the high ambient nitrate concentrations. Along with ammonium concentrations as high as 3.6 µmol l–1, this strongly suggests that nitrate uptake in the inshore SBUS, and by extension carbon drawdown, is inhibited by ammonium, at least in winter, although this has also been hypothesised for the summer.  相似文献   

18.
Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus “Scalindua spp.” dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml−1) and activity (up to 5.75 nmol N2 L−1 d−1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.  相似文献   

19.
20.
Nitrification and nitrate reduction were measured simultaneously by a 15N-isotope dilution technique in the top 2 cm of sandy sediments in Great South Bay, Long Island, New York. Experiments were done at three times, under three different sets of environmental conditions. Nitrification rates remained between 0.010 and 0.015 μg-at N (g dry wt)−1 (24 h)−1 despite decreasing temperature. Nitrate reduction ranged from 0.02 to 0.11 μg-at N (g dry wt)−1 (24 h)−1. Nitrate reduction exceeded nitrification in two experiments. In the third, at low temperature and apparently high oxygen levels, rates of nitrification and nitrate reduction were comparable. We conclude that there is not a constant relationship between nitrification and nitrate reduction in this environment. Attempts to measure rates of nitrification by using the inhibitor chlorate were not successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号