首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New and compiled detrital zircon U–Pb ages from the southern Neoproterozoic–Cambrian Ribeira Belt, SE Brazil, demonstrate Laurentian affinity of the Embu Terrane which is statistically distinct from the adjoining Apiaí and São Roque terranes with cratonic affinity (e.g., São Francisco Craton). Zircon provenance results indicate that the type-area of the Embu Terrane is dominated by detrital zircon age modes at ca. 1200 Ma, 1400 Ma, and 1800 Ma, with maximum depositional age of ca. 1000 Ma. In contrast, the Apiaí and São Roque terranes are dominated by Paleoproterozoic detrital zircon ages (ca. 2200–2000 Ma age dominant component), with maximum depositional ages of ca. 1400 Ma and 1750 Ma, respectively. Multidimensional scaling (MDS) analysis of non-parametric similarity measurements on zircon age populations indicates for the first time that the Embu Terrane encompass two statistically distinct detrital zircon age spectra, which is also reflected in the metamorphic zircon age record. The statistical characterization of the Embu Terrane through populational metrics allow a quantitative comparison with surrounding tectonic domains and rock samples classified such as Embu-type. Our results clearly highlight the distinction between the statistically differentiated Embu Terrane from the Apiaí and São Roque terranes, supporting an allochthonous interpretation. In addition, we demonstrate that rocks samples previously classified as Embu-type are significantly dissimilar to the definition of Embu Terrane, failing to support alternative tectonic models (e.g., intracontinental evolution). Detrital zircon age spectra reveal that the Apiaí and São Roque terranes have similar zircon provenance to domains sourced from the São Francisco Craton, whereas detrital zircon populations from the Embu Terrane have greater affinity with SW Laurentia basins (and their inferred sediment sources), consistent with previous findings. Therefore, we interpret the Embu Terrane as a Rodinia descendant developed along the active margin of the SW Laurentia that collided with the Ribeira Belt during early Neoproterozoic (810–760 Ma).  相似文献   

2.
In southeastern Brazil, the Neoproterozoic NNW–SSE trending southern Brasília belt is apparently truncated by the ENE–WSW central Ribeira belt. Different interpretations in the literature of the transition between these two belts motivated detailed mapping and additional age dating along the contact zone. The result is a new interpretation presented in this paper. The southern Brasília belt resulted from E-W collision between the active margin of the Paranapanema paleocontinent, on the western side, now forming the Socorro-Guaxupé Nappe, with the passive margin of the São Francisco paleocontinent on the eastern side. The collision produced an east vergent nappe stack, the Andrelândia Nappe System, along the suture. At its southern extreme the Brasília belt was thought to be cut off by a shear zone, the “Rio Jaguari mylonites”, at the contact with the Embu terrane, pertaining to the Central Ribeira belt. Our detailed mapping revealed that the transition between the Socorro-Guaxupé Nappe (Brasília belt) and the Embu terrane (Ribeira belt) is not a fault but rather a gradational transition that does not strictly coincide with the Rio Jaguari mylonites. A typical Cordilleran type magmatic arc batholith of the Socorro-Guaxupé Nappe with an age of ca. 640 Ma intrudes biotite schists of the Embu terrane and the age of zircon grains from three samples of metasedimentary rocks, one to the south, one to the north and one along the mylonite zone, show a similar pattern of derivation from a Rhyacian source area with rims of 670–600 Ma interpreted as metamorphic overgrowth. We dated by LA-MC-ICPMS laser ablation (U–Pb) zircon grains from a calc-alkaline granite, the Serra do Quebra-Cangalha Batholith, located within the Embu terrane at a distance of about 40 km south of the contact with the Socorro Nappe, yielding an age of 680 ± 13 Ma. This age indicates that the Embu terrane was part of the upper plate (Socorro-Guaxupé Nappe) by this time. Detailed mapping indicates that the mylonite zone is not a plate boundary because motion along it is maximum a few tens of kilometres and the same litho-stratigraphic units are present on either side. Based on these arguments, the new interpretation is that the Embu terrane is the continuation of the Socorro-Guaxupé Nappe and therefore also part of the active margin of the Paranapanema paleocontinent. The Brasília belt is preserved even further within the central Ribeira belt than previously envisaged.  相似文献   

3.
The Maria da Fé Shear Zone (MFSZ) is a sinistral strike-slip kilometric-scale structure developed in the late Neoproterozoic during the assembly of Gondwana. The MFSZ development is related to the NW–SE collision between the São Francisco Paleocontinent and the Rio Negro Magmatic Arc, which formed the Ribeira Belt. This paper describes the shear zone in detail, concluding that the orientation and age are consistent with NW–SE shortening during the afore mentioned collision. A U–Pb SHRIMP Concordia age of 586.9 ± 8.7 Ma is reported from zircon grains of a granitic dyke that crystallised synkinematically to the main tectonic activity of the shear zone. Another group of zircon grains from the same sample generated an upper intercept age of 2083 ± 43 Ma anchored in the younger Concordia age. These zircon grains are interpreted as relict grains of the basement from which the granite dyke was generated by partial melting. The temperature during mylonitization in the MFSZ was estimated in the range from 450 to 600 °C, based on microstructures in quartz and feldspar. An earlier collision in the same region, between 640 and 610 Ma, led to an extensive nappe-stack with tectonic transport to ENE, integrating the southern Brasilia Belt. One of the thrust zones between these nappes in the studied area is the Cristina Shear Zone with mylonites that were generated under upper amphibolite to granulite facies conditions. Brittle-ductile E–W metric-scale shear zones are superimposed on the MFSZ, which were active in similar, but probably slightly cooler, metamorphic conditions (≈500 °C).  相似文献   

4.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

5.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

6.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

7.
8.
Back‐arc basins hold the key in understanding the geodynamics of orogenic processes. The Qinling–Dabie orogenic belt in central China is one of the most important orogenic belts constraining the tectonic framework of eastern Asia. However, its Palaeozoic accretionary processes remain equivocal, mainly derived from the age uncertainty of the back‐arc basin in the Qinling orogen. We carried out zircon U–Pb geochronology for two pyroclastic volcanic rocks intercalated within the Erlangping back‐arc basin basalts. They yield U–Pb ages of 435.8 ± 4.2 Ma and 435.7 ± 3.8 Ma, which precisely constrain the timing of the back‐arc basin opening. The opening of the Erlangping back‐arc basin might have been triggered by the rollback of the Proto‐Tethyan oceanic slab due to the southward migration of arc magmatism at ca. 440 Ma. The Palaeozoic tectonic evolution and orogen‐scale geodynamic processes of the Qinling orogen are thus reconstructed.  相似文献   

9.
The assembly and long-term evolution of the Eastern Block of the North China Craton are poorly constrained. Here we use bulk rock geochronological and geochemical data from mafic meta-igneous rocks (hornblendites, amphibolites and a metagabbro) of the Liaohe Group to reconstruct the Neoarchean to Paleoproterozoic history of the Jiao-Liao-Ji Belt, located between the Longgang and Nangrim blocks that together form the Eastern Block of the North China Craton. The mafic/ultramafic meta-igneous rocks have intrusive or tectonic contacts with the Liaoji granitic rocks (~2.2–2.0 Ga), which form the basement of the Jiao-Liao-Ji Belt. The major and trace element data indicate that the protoliths had calc-alkaline composition and formed along an active continental margin subduction zone. The mafic rocks form a whole-rock 176Lu/177Hf isochron with an age of 2.25 ± 0.31 Ga, overlapping with UPb zircon ages for mafic and granitic rocks from the Jiao-Liao-Ji Belt and consistent with being the emplacement age of the mafic protoliths along the active continental margin. In contrast, the whole-rock 147Sm/144Nd isochron age of 2.83 ± 0.18 Ga is likely to reflect the average age of the lithospheric mantle source from which the mafic/ultramafic protoliths were extracted. Together with geological evidence, we propose that the southwestern portion of the Longgang Block was an active continental margin since at least the early Paleoproteorozic. Literature age data from metamorphic zircons show that peak granulite metamorphism took place at ~1.96–1.88 Ga, resulting from the collisional event that fused the Longgang and Nangrim blocks into the Eastern Block of the North China Craton. Our bulk-rock 207Pb/206Pb age of 1824 ± 19 Ma and our 87Rb/86Sr age of 1671 ± 58 Ma reflect retrograde (cooling) stages during the exhumation of the Jiao-Liao-Ji Belt after the orogenesis.  相似文献   

10.
华南板块早中生代陆内造山过程——以雪峰山-九岭为例   总被引:3,自引:1,他引:2  
褚杨  林伟  FAURE Michel  王清晨 《岩石学报》2015,31(8):2145-2155
雪峰山-九岭造山带位于华南板块的中心区域,是一条典型的陆内造山带。通过详细的野外地质观察,雪峰山在早中生代经历了3期构造变形:D1为上部指向NW的韧性剪切,D2代表了一期反向褶皱-逆冲构造事件,以及D3期的水平挤压形成的直立的褶皱、劈理和线理。而在九岭,早中生代大规模脆-韧性域构造变形叠加在早古生代韧性变形之上,形成了一系列极性NW逆冲断层和不对称褶皱。雪峰山-九岭陆内造山带形成于早中生代,造山作用可以分为两个阶段,即245~225Ma的挤压变形阶段和225~215Ma的垮塌-岩浆侵位阶段。雪峰山-九岭造山带的构造特点表明,华南板块东南缘古太平洋板块向北西方向的俯冲可能引发了早中生代的陆内造山过程。  相似文献   

11.
The Red River shear zone (RRSZ) is a major left‐lateral strike‐slip shear zone, containing a ductilely deformed metamorphic core bounded by brittle strike‐slip and normal faults, which stretches for >1000 km from Tibet through Yunnan and North Vietnam to the South China Sea. The RRSZ exposes four high‐grade metamorphic core complexes along its length. Various lithologies from the southernmost core complex, the Day Nui Con Voi (DNCV), North Vietnam, provide new constraints on the tectonic and metamorphic evolution of this region prior to and following the initial India–Asia collision. Analysis of a weakly deformed anatectic paragneiss using PT pseudosections constructed in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNCKFMASHTO) system provides prograde, peak and retrograde metamorphic conditions, and in situ U–Th–Pb geochronology of metamorphic monazite yields texturally controlled age constraints. Tertiary metamorphism and deformation, overprinting earlier Triassic metamorphism associated with the Indosinian orogeny and possible Cretaceous metamorphism, are characterized by peak metamorphic conditions of ~805 °C and ~8.5 kbar between c. 38 and 34 Ma. Exhumation occurred along a steep retrograde P–T path with final melt crystallizing at the solidus at ≥~5.5 kbar at ~790 °C. Further exhumation at ~640–700 °C and ~4–5 kbar at c. 31 Ma occurred at subsolidus conditions. U–Pb geochronological analysis of monazite from a strongly deformed pre‐kinematic granite dyke from the flank of the DNCV provides further evidence for exhumation at this time. Magmatic grains suggest initial emplacement at 66.0 ± 1.0 Ma prior to the India–Asia collision, whereas grains with metamorphic characteristics indicate later growth at 30.6 ± 0.4 Ma. Monazite grains from a cross‐cutting post‐kinematic dyke within the core of the DNCV antiform provide a minimum age constraint of 25.2 ± 1.4 Ma for the termination of fabric development. A separate and significant episode of monazite growth at c. 83–69 Ma is suggested to be the result of fluid‐assisted recrystallization following the emplacement of magmatic units.  相似文献   

12.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   

13.
The Southeast Anatolian Orogenic Belt (SAOB), the most extensive segment of the Alpine-Himalayan Orogenic Belt, resulted from the northward subduction of the southern branch of the Neotethys oceanic crust beneath the Anatolian micro-plate. We present new whole-rock geochemistry, zircon U–Pb ages, and Lu–Hf isotope data from the stocks and dykes with a length of up to tens of meters belonging to the Keban magmatic rocks, eastern Turkey. These rocks are represented by syenite and quartz monzonite intruded into the Keban metamorphic complex. The geochemistry data indicates that the samples bear mostly metaluminous, variably high alkalines (K2O + Na2O), Ga/Al ratios and zircon saturation temperature, and typically the A-type granite characters. According to the Y/Nb vs Yb/Ta diagram, the Keban magmatic rocks show A1-type geochemical signatures modified by crustal melts. Syenite and quartz monzonite samples from Keban magmatic rocks give zircon U–Pb ages of 77.4 ± 0.34 Ma, 76.3 ± 0.3 Ma and 76.36 ± 0.34 Ma, respectively. On the primitive mantle-normalised trace element patterns, the Keban magmatic rocks show enrichment in large-ion lithophile elements (LILEs) relative to high field strength elements (HFSEs). They are coupled with slightly negative Nb–Ta anomalies. Chondrite-normalised rare earth-element patterns show strong enrichment in LREEs relative to HREEs, a typical A-type granites feature. The zircons have negative εHf(t) values that vary from ?2.68 to ?0.41, and Hf model ages (TDM2) range from 1171.54 to 1329.26 Ma, indicating the enriched lithospheric mantle sources and crustal contribution. The sources and evolution of the alkaline magmas might be related to the post-collisional tectonic setting.  相似文献   

14.
The distribution of peraluminous granites in Tibet is treated on the basis of the tectonic zones in which they occur, their spatial and temporal distribution, the peak of magmatic activity and the volume of magma intruded. Magmatic activity, with the intrusion of peraluminous granites, was initiated during the Early Jurassic and culminated in the middle Miocene, especially between 20 and 10 Ma. Rock types include tourmaline, muscovite and two-mica granites. Magmatic activity in the Gangdise Belt migrated from the east to west and from the south to the north. Episodes of tectonic evolution for the lithosphere of the Qinghai–Xizang (Tibet) Plateau, deduced from peraluminous granite intrusion are: (1) Latest Triassic to Early Jurassic (208–157 Ma), representing the subduction phase of the Bangong Co–Nu Jiang oceanic zone; (2) Late Jurassic to Early Cretaceous (157–97 Ma), representing the subduction and collision phases of the Bangong–Nu Jiang oceanic zone; (3) Late Cretaceous to early Paleocene (97–65 Ma), representing the subduction and initial collision phases of the Yarlung Zangbo oceanic zone ; (4) Paleocene to Eocene (65–40 Ma), representing the major collisional stage of the Yarlung Zangbo Oceanic zone and the formation of crust-derived granites; and (5) Oligocene to Recent, representing an intense intracontinental convergence phase.  相似文献   

15.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

16.
Basaltic dykes of Peninsular Malaysia are confined to the Eastern Belt (Indochina/East Malaya block) as compared with the Western Belt (Sibumasu Block). The dyke intruded through a crustal fracture formed by stress developed from the evolution of two offshore basins (Malay and Penyu basins) east of Peninsular Malaysia. The Ar–Ar dating from the present study combined with the previous geochronological data indicate that the ages of dykes range from 79 ± 2 Ma to 179 ± 2 Ma. Thus it is difficult to correlate the dykes with the closure of Tethys during Permo-Triassic time because of the younger age of the dykes. The majority of the dykes exposed in the Eastern Belt may have been attributed to the difference of crustal thickness between the Eastern and Western belt of Peninsular Malaysia. A thicker Western Belt crust (13 km more than both Eastern and Central belts) is difficult to rupture with normal plate tectonic stress and therefore serves to contain the rise of a mantle derived melt. The chemistry indicates the basalts are olivine to quartz normative and are of the continental within-plate category.  相似文献   

17.
Cooling rates based on the retrograde diffusion of Fe2+ and Mg between garnet and biotite inclusions commonly show two contrasting scenarios: a) narrow closure temperature range with apparent absence of retrograde diffusion; or b) high result dispersion due to compositional variations in garnet and biotite. Cooling rates from migmatites, felsic and mafic granulites from Ribeira Fold Belt (SE Brazil) also show these two scenarios. Although the former can be explained by very fast cooling, the latter is often the result of open-system behaviour caused by deformation. Retrogressive cooling during the exhumation of granulite-facies rocks is often processed by thrusting and shearing which may cause plastic deformation, fractures and cracks in the garnet megablasts, allowing chemical diffusion outside the garnet megablast – biotite inclusion system.However, a careful use of garnets and biotites with large Fe/Mg variation and software that reduces result dispersion provides a good correlation between closure temperatures and the size of biotite inclusions which are mostly due to diffusion and compositional readjustment to thermal evolution during retrogression.Results show that felsic and mafic granulites have low cooling rates (1–2 °C/Ma) at higher temperatures and high cooling rates (∼100 °C/Ma) at lower temperatures, suggesting a two-step cooling/exhumation process, whereas migmatites show a small decrease in cooling rates during cooling (from 2.0 to 0.5 °C/Ma). These results agree with previously obtained thermochronological data, which indicates that this method is a valid tool to obtain meaningful petrological cooling rates in complex high-grade orogenic belts, such as the Ribeira Fold Belt.  相似文献   

18.
杨莉  袁万明  朱晓勇  时贞 《岩石学报》2019,35(5):1478-1488
三江特提斯造山带位于青藏高原东南侧,历经古生代-中生代不同特提斯洋开合、复杂增生造山和强烈成矿作用,倍受学界关注。本文应用锆石裂变径迹年代学研究中咱地块-义敦岛弧的构造活动,取得了新的认识,对特提斯演化扩展了时限制约。计获得12件锆石裂变径迹年龄分析结果,年龄变化于165~76Ma之间,并可划分为多个年龄组,即165Ma、144Ma、135~134Ma、126~108Ma、102~89Ma和76Ma。主要揭示新特提斯构造热事件,这些年龄组分别记录了班公湖-怒江洋形成阶段、班公湖-怒江洋开始闭合、雅鲁藏布江洋盆俯冲、班公湖-怒江洋闭合、陆内碰撞和陆内伸展。此时中咱地块-义敦岛弧均处于陆内演化过程。  相似文献   

19.
The time‐scales and P–T conditions recorded by granulite facies metamorphic rocks permit inferences about the geodynamic regime in which they formed. Two compositionally heterogeneous cordierite–spinel‐bearing granulites from Vizianagaram, Eastern Ghats Province (EGP), India, were investigated to provide P–T–time constraints using petrography, phase equilibrium modelling, U–Pb geochronology, the rare earth element composition of zircon and monazite, and Ti‐in‐zircon thermometry. These ultrahigh temperature (UHT) granulites preserve discrete compositional layering in which different inferred peak assemblages are developed, including layers bearing garnet–sillimanite–spinel, and others bearing orthopyroxene–sillimanite–spinel. These mineral associations cannot be reproduced by phase equilibrium modelling of whole‐rock compositions, indicating that the samples became domainal on a scale less than that of a thin section, even at UHT conditions. Calculation of the P–T stability fields for six compositional domains within which the main rock‐forming minerals are considered to have attained equilibrium suggests peak metamorphic conditions of ~6.8–8.3 kbar at ~1,000°C. In most of these domains, the subsequent evolution resulted in the growth of cordierite and final crystallization of melt at an elevated (residual) H2O‐undersaturated solidus, consistent with <1 kbar of decompression. Concordant U–Pb ages obtained by SHRIMP from zircon (spread 1,050–800 Ma) and monazite (spread 950–800 Ma) demonstrate that crystallization of these minerals occurred during an interval of c. 250 Ma. By combining LA‐ICP‐MS U–Pb zircon ages with Ti‐in‐zircon temperatures from the same analysis sites, we show that the crust may have remained above 900°C for a minimum of c. 120 Ma between c. 1,000 and c. 880 Ma. Overall, the results suggest that, in the interval 1,050 to 800 Ma, the evolution of the Vizianagaram granulites culminated with UHT conditions from c. 1,000 Ma to c. 880 Ma, associated with minor decompression, before further zircon crystallization at c. 880–800 Ma during cooling to the solidus. However, these rocks are adjacent to the Paderu–Anantagiri–Salur crustal block to the NW that experienced counterclockwise P–T–t paths, and records similar UHT peak metamorphic conditions (7–8 kbar, ~950°C) followed by near‐isobaric cooling, and has a similar chronology during the Neoproterozoic. The limited decompression inferred at Vizianagaram may be explained by partial exhumation due to thrusting of this crustal block over the adjacent Paderu–Anantagiri–Salur crustal block. The residual granulites in both blocks have high concentrations of heat‐producing elements and likely remained hot at mid‐crustal depths throughout a period of relative tectonic quiescence in the interval 800–550 Ma. During the Cambrian Period, the EGP was located in the hinterland of the Denman–Pinjarra–Prydz orogen. A later concordant population of zircon dated at 511 ± 6 Ma records crystallization at temperatures of ~810°C. This age may record a low‐degree of melting due to limited influx of fluid into hot, weak crust in response to convergence of the Crohn craton with a composite orogenic hinterland comprising the Rayner terrane, EGP, and cratonic India.  相似文献   

20.
In Rogaland, South Norway, a polycyclic granulite facies metamorphic domain surrounds the late‐Sveconorwegian anorthosite–mangerite–charnockite (AMC) plutonic complex. Integrated petrology, phase equilibria modelling, monazite microchemistry, Y‐in‐monazite thermometry, and monazite U–Th–Pb geochronology in eight samples, distributed across the apparent metamorphic field gradient, imply a sequence of two successive phases of ultrahigh temperature (UHT) metamorphism in the time window between 1,050 and 910 Ma. A first long‐lived metamorphic cycle (M1) between 1,045 ± 8 and 992 ± 11 Ma is recorded by monazite in all samples. This cycle is interpreted to represent prograde clockwise P–T path involving melt production in fertile protoliths and culminating in UHT conditions of ~6 kbar and 920°C. Y‐in‐monazite thermometry, in a residual garnet‐absent sapphirine–orthopyroxene granulite, provides critical evidence for average temperature of 931 and 917°C between 1,029 ± 9 and 1,006 ± 8 Ma. Metamorphism peaked after c. 20 Ma of crustal melting and melt extraction, probably supported by a protracted asthenospheric heat source following lithospheric mantle delamination. Between 990 and 940 Ma, slow conductive cooling to 750–800°C is characterized by monazite reactivity as opposed to silicate metastability. A second incursion (M2) to UHT conditions of ~3.5–5 kbar and 900–950°C, is recorded by Y‐rich monazite at 930 ± 6 Ma in an orthopyroxene–cordierite–hercynite gneiss and by an osumilite gneiss. This M2 metamorphism, typified by osumilite paragenesis, is related to the intrusion of the AMC plutonic complex at 931 ± 2 Ma. Thermal preconditioning of the crust during the first UHT metamorphism may explain the width of the aureole of contact metamorphism c. 75 Ma later, and also the rarity of osumilite‐bearing assemblages in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号