首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spatial anomalies may be single points or small regions whose non‐spatial attribute values are significantly inconsistent with those of their spatial neighborhoods. In this article, a S patial A nomaly P oints and R egions D etection method using multi‐constrained graphs and local density ( SAPRD for short) is proposed. The SAPRD algorithm first models spatial proximity relationships between spatial entities by constructing a Delaunay triangulation, the edges of which provide certain statistical characteristics. By considering the difference in non‐spatial attributes of adjacent spatial entities, two levels of non‐spatial attribute distance constraints are imposed to improve the proximity graph. This produces a series of sub‐graphs, and those with very few entities are identified as candidate spatial anomalies. Moreover, the spatial anomaly degree of each entity is calculated based on the local density. A spatial interpolation surface of the spatial anomaly degree is generated using the inverse distance weight, and this is utilized to reveal potential spatial anomalies and reflect their whole areal distribution. Experiments on both simulated and real‐life spatial databases demonstrate the effectiveness and practicability of the SAPRD algorithm.  相似文献   

2.
The spatial nature of crash data highlights the importance of employing Geographical Information Systems (GIS) in different fields of safety research. Recently, numerous studies have been carried out in safety analysis to investigate the relationships between crashes and related factors. Trip generation as a function of land use, socio‐economic, and demographic characteristics might be appropriate variables along with network characteristics and traffic volume to develop safety models. Generalized Linear Models (GLMs) describe the relationships between crashes and the explanatory variables by estimating the global and fixed coefficients. Since crash occurrences are almost certainly influenced by many spatial factors; the main objective of this study is to employ Geographically Weighted Poisson Regression (GWPR) on 253 traffic analysis zones (TAZs) in Mashhad, Iran, using traffic volume, network characteristics and trip generation variables to investigate the aspects of relationships which do not emerge when using conventional global specifications. GWPR showed an improvement in model performance as indicated by goodness‐of‐fit criteria. The results also indicated the non‐stationary state in the relationships between the number of crashes and all independent variables.  相似文献   

3.
Multi‐scale effects of spatial autocorrelation may be present in datasets. Given the importance of detecting local non‐stationarity in many theoretical as well as applied studies, it is necessary to “remove” the impact of large‐scale autocorrelation before common techniques for local pattern analysis are applied. It is proposed in this paper to employ the regionalized range to define spatially varying sub‐regions within which the impact of large‐scale autocorrelation is minimized and the local patterns can be investigated. A case study is conducted on crime data to detect crime hot spots and cold spots in San Antonio, Texas. The results confirm the necessity of treating the non‐stationarity of large‐scale spatial autocorrelation prior to any action aiming at detecting local autocorrelation.  相似文献   

4.
5.
Spatial co‐location pattern mining aims to discover a collection of Boolean spatial features, which are frequently located in close geographic proximity to each other. Existing methods for identifying spatial co‐location patterns usually require users to specify two thresholds, i.e. the prevalence threshold for measuring the prevalence of candidate co‐location patterns and distance threshold to search the spatial co‐location patterns. However, these two thresholds are difficult to determine in practice, and improper thresholds may lead to the misidentification of useful patterns and the incorrect reporting of meaningless patterns. The multi‐scale approach proposed in this study overcomes this limitation. Initially, the prevalence of candidate co‐location patterns is measured statistically by using a significance test, and a non‐parametric model is developed to construct the null distribution of features with the consideration of spatial auto‐correlation. Next, the spatial co‐location patterns are explored at multi‐scales instead of single scale (or distance threshold) discovery. The validity of the co‐location patterns is evaluated based on the concept of lifetime. Experiments on both synthetic and ecological datasets show that spatial co‐location patterns are discovered correctly and completely by using the proposed method; on the other hand, the subjectivity in discovery of spatial co‐location patterns is reduced significantly.  相似文献   

6.
Qualitative locations describe spatial objects by relating the spatial objects to a frame of reference (e.g. a regional partition in this study) with qualitative relations. Existing models only formalize spatial objects, frames of reference, and their relations at one scale, thus limiting their applicability in representing location changes of spatial objects across scales. A topology‐based, multi‐scale qualitative location model is proposed to represent the associations of multiple representations of the same objects with respect to the frames of reference at different levels. Multi‐scale regional partitions are first presented to be the frames of reference at multiple levels of scale. Multi‐scale locations are then formalized to relate multiple representations of the same objects to the multiple frames of reference by topological relations. Since spatial objects, frames of reference, and topological relations in qualitative locations are scale dependent, scale transformation approaches are presented to derive possible coarse locations from detailed locations by incorporating polygon merging, polygon‐to‐line and polygon‐to‐point operators.  相似文献   

7.
Effects of scale in spatial interaction models   总被引:1,自引:0,他引:1  
We study the effects of aggregation on four different cases of nonlinear spatial gravity models. We present some theoretical results on the relationship between the mean flows at an aggregated level and the mean flow at the disaggregated level. We then focus on the case of perfect aggregation (scale problem) showing some results based on the theoretical expressions previously derived and on some artificial data. The main aim is to test the effects on the aggregated flows of the spatial dependence observed in the origin and in the destination variables. We show that positive spatial dependence in the origin and destination variables moderate the increase of the mean flows connatural with aggregation while negative spatial dependence exacerbates it.  相似文献   

8.
Geographically weighted regression (GWR) is an important local method to explore spatial non‐stationarity in data relationships. It has been repeatedly used to examine spatially varying relationships between epidemic diseases and predictors. Malaria, a serious parasitic disease around the world, shows spatial clustering in areas at risk. In this article, we used GWR to explore the local determinants of malaria incidences over a 7‐year period in northern China, a typical mid‐latitude, high‐risk malaria area. Normalized difference vegetation index (NDVI), land surface temperature (LST), temperature difference, elevation, water density index (WDI) and gross domestic product (GDP) were selected as predictors. Results showed that both positively and negatively local effects on malaria incidences appeared for all predictors except for WDI and GDP. The GWR model calibrations successfully depicted spatial variations in the effect sizes and levels of parameters, and also showed substantially improvements in terms of goodness of fits in contrast to the corresponding non‐spatial ordinary least squares (OLS) model fits. For example, the diagnostic information of the OLS fit for the 7‐year average case is R2 = 0.243 and AICc = 837.99, while significant improvement has been made by the GWR calibration with R2 = 0.800 and AICc = 618.54.  相似文献   

9.
The Role of External Variables and GIS Databases in Geostatistical Analysis   总被引:3,自引:0,他引:3  
Although many geostatistical studies only study a measured attribute in relation to its spatial coordinates, this paper argues that other layers in the GIS database can be of additional use for spatial prediction purposes. They may enter the prediction equations as predictors in a regression model, or as correlated measurements. In an example we will show how this is done for predicting PCB138, a sediment pollution variable, over the North Sea floor. Issues of exploratory data analysis, required sample size, sample configuration, local versus global neighbourhoods, non‐stationarity, non‐linear transformations, change of support and conditional simulation will be discussed in the light of this example.  相似文献   

10.
Geostatistical characterization of local DEM error is usually based on the assumption of a stationary variogram model which requires the mean and variance to be finite and constant in the area under investigation. However, in practice this assumption is appropriate only in a restricted spatial location, where the local experimental variograms vary slowly. Therefore, an adaptive method is developed in this article to model non‐stationary variograms, for which the estimator and the indicator for characterization of spatial variation are a Voronoi map and the standard deviation of mean values displayed in the Voronoi map, respectively. For the adaptive method, the global domain is divided into different meshes with various sizes according to the variability of local variograms. The adaptive method of non‐stationary variogram modeling is applied to simulating error surfaces of a LiDAR derived DEM located in Sichuan province, China. Results indicate that the locally adaptive variogram model is more accurate than the global one for capturing the characterization of spatial variation in DEM errors. The adaptive model can be considered as an alternative approach to modeling non‐stationary variograms for DEM error surface simulation.  相似文献   

11.
This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.  相似文献   

12.
Abstract

Much of the human dimensions of environmental change research emphasize the mapping and modeling of land use and land cover patterns over space and time, and the linkages between people, place, and environment as proximate and distal forces of landscape dynamics. Spatial digital technologies, framed within a GIScience (GISc) context, figure prominently in the characterization of land use and land cover through remote sensing technologies, and in the assessment of social and demographic factors and local and regional site and situation considerations achieved through global positioning systems, data visualizations, and spatial and statistical analyses. Here, we describe some fundamental approaches for linking data across thematic domains, essential for the study of human‐environment interactions. The goal is to generate compatible data sets that extend across social, biophysical, and geographical domains so that the causes and consequences of land use and land cover dynamics might be explored within a spatially‐explicit context.  相似文献   

13.
We introduce a novel scheme for automatically deriving synthetic walking (locomotion) and movement (steering and avoidance) behavior in simulation from simple trajectory samples. We use a combination of observed and recorded real‐world movement trajectory samples in conjunction with synthetic, agent‐generated, movement as inputs to a machine‐learning scheme. This scheme produces movement behavior for non‐sampled scenarios in simulation, for applications that can differ widely from the original collection settings. It does this by benchmarking a simulated pedestrian's relative behavioral geography, local physical environment, and neighboring agent‐pedestrians; using spatial analysis, spatial data access, classification, and clustering. The scheme then weights, trains, and tunes likely synthetic movement behavior, per‐agent, per‐location, per‐time‐step, and per‐scenario. To prove its usefulness, we demonstrate the task of generating synthetic, non‐sampled, agent‐based pedestrian movement in simulated urban environments, where the scheme proves to be a useful substitute for traditional transition‐driven methods for determining agent behavior. The potential broader applications of the scheme are numerous and include the design and delivery of location‐based services, evaluation of architectures for mobile communications technologies, what‐if experimentation in agent‐based models with hypotheses that are informed or translated from data, and the construction of algorithms for extracting and annotating space‐time paths in massive data‐sets.  相似文献   

14.
In this article, multilayer perceptron (MLP) network models with spatial constraints are proposed for regionalization of geostatistical point data based on multivariate homogeneity measures. The study focuses on non‐stationarity and autocorrelation in spatial data. Supervised MLP machine learning algorithms with spatial constraints have been implemented and tested on a point dataset. MLP spatially weighted classification models and an MLP contiguity‐constrained classification model are developed to conduct spatially constrained regionalization. The proposed methods have been tested with an attribute‐rich point dataset of geological surveys in Ukraine. The experiments show that consideration of the spatial effects, such as the use of spatial attributes and their respective whitening, improve the output of regionalization. It is also shown that spatial sorting used to preserve spatial contiguity leads to improved regionalization performance.  相似文献   

15.
Local land‐use and ‐cover changes (LUCCs) are the result of both the decisions and actions of individual land‐users, and the larger global and regional economic, political, cultural, and environmental contexts in which land‐use systems are embedded. However, the dearth of detailed empirical data and knowledge of the influences of global/regional forces on local land‐use decisions is a substantial challenge to formulating multi‐scale agent‐based models (ABMs) of land change. Pattern‐oriented modeling (POM) is a means to cope with such process and parameter uncertainty, and to design process‐based land change models despite a lack of detailed process knowledge or empirical data. POM was applied to a simplified agent‐based model of LUCC to design and test model relationships linking global market influence to agents’ land‐use decisions within an example test site. Results demonstrated that evaluating alternative model parameterizations based on their ability to simultaneously reproduce target patterns led to more realistic land‐use outcomes. This framework is promising as an agent‐based virtual laboratory to test hypotheses of how and under what conditions driving forces of land change differ from a generalized model representation depending on the particular land‐use system and location.  相似文献   

16.
Spatial accessibility is an enduring topic of spatial analysis that is intimately tied to issues of spatial representation and scale. A variety of methods to measure accessibility have been developed with most research focusing on metropolitan‐sized spatial extents using census‐defined aggregation units and relying on vector point representation to calculate Euclidean or network distances as key ingredients in measure formulations. Less research considers broader scales where both origin and destination points are treated as polygons. This research develops alternative gravity‐based measures of polygon‐to‐polygon accessibility for a case study of county‐level accessibility to national forests in the western US. Different methods of county and forest representation are implemented using census block centroids and a lattice approach for disaggregation and re‐aggregation. Other characteristics that are analyzed include origin‐destination linkage definitions, population weighting, and distance thresholds. Correlation analysis is used to assess relationships of alternative measures with a simple percentage measure and with each other. Low correlations would suggest that measures capture different aspects of accessibility that are related to their qualitative characteristics. Results show the alternative measures to be dissimilar from the percentage measure; however, high correlations among alternative measures suggest that there is little to differentiate certain disaggregated measures in spite of their richer qualitative interpretation.  相似文献   

17.
Cluster correspondence analysis examines the spatial autocorrelation of multi-location events at the local scale. This paper argues that patterns of cluster correspondence are highly sensitive to the definition of operational neighborhoods that form the spatial units of analysis. A subset of multi-location events is examined for cluster correspondence if they are associated with the same operational neighborhood. This paper discusses the construction of operational neighborhoods for cluster correspondence analysis based on the spatial properties of the underlying zoning system and the scales at which the zones are aggregated into neighborhoods. Impacts of this construction on the degree of cluster correspondence are also analyzed. Empirical analyses of cluster correspondence between paired vehicle theft and recovery locations are conducted on different zoning methods and across a series of geographic scales and the dynamics of cluster correspondence patterns are discussed.   相似文献   

18.
ABSTRACT

Socioeconomic and health analysts commonly rely on areally aggregated data, in part because government regulations on confidentiality prohibit data release at the individual level. Analytical results from areally aggregated data, however, are sensitive to the modifiable areal unit problem (MAUP). Levels of aggregation as well as the arbitrary and modifiable sizes, shapes, and arrangements of zones affect the validity and reliability of findings from analyses of areally aggregated data. MAUP, long acknowledged, remains unresolved. We present an exploratory spatial data analytical approach (ESDA) to understand the scalar effects of MAUP. To characterize relationships between data aggregation structures and spatial scales, we develop a method for statistically and visually exploring the local indicators of spatial association (LISA) exhibited between a variable and itself across varying levels of aggregation. We demonstrate our approach by analyzing the across-scale relationships of aggregated 2010 median income for the State of Pennsylvania and 2005–2009 cancer diagnosis rates for the State of New York between county–tract, tract–block group, and county–block group level US census designated enumeration units. This method for understanding the relationship between MAUP and spatial scale provides guidance to researchers in selecting the most appropriate scales to aggregate, analyze, and represent data for problem-specific analyses.  相似文献   

19.
Spatial analysis and spatial information systems have great potential in many non‐geographic domains. This paper presents an example of the utility of spatial analysis in a non‐geographic domain. A technique of pupillometry using digital infrared video loosely coupled with a Spatial Information System and a spreadsheet is developed to accurately quantify pupil dilation magnitude and constriction onset latency for participants of different cognitive ability and under different cognitive loads. Spatio‐temporal pupil dynamics of participants are recorded using digital infrared video. The pupil to iris area ratio is calculated for over 470,000 temporally sequenced de‐interlaced video fields by automatic feature extraction using a combination of threshold analysis, spatial smoothing and areal filtering. Pupil dilation magnitudes and constriction onset latencies are calculated through post‐processing in a spreadsheet. The study identifies inadequacies in current spatial analytical techniques for automatic feature extraction not necessarily evident in geographic applications. Issues impeding the employment of spatial analysis in non‐geographic domains including the lack of a generic spatial referencing system are identified and discussed.  相似文献   

20.
ABSTRACT

Spatial heterogeneity represents a general characteristic of the inequitable distributions of spatial issues. The spatial stratified heterogeneity analysis investigates the heterogeneity among various strata of explanatory variables by comparing the spatial variance within strata and that between strata. The geographical detector model is a widely used technique for spatial stratified heterogeneity analysis. In the model, the spatial data discretization and spatial scale effects are fundamental issues, but they are generally determined by experience and lack accurate quantitative assessment in previous studies. To address this issue, an optimal parameters-based geographical detector (OPGD) model is developed for more accurate spatial analysis. The optimal parameters are explored as the best combination of spatial data discretization method, break number of spatial strata, and spatial scale parameter. In the study, the OPGD model is applied in three example cases with different types of spatial data, including spatial raster data, spatial point or areal statistical data, and spatial line segment data, and an R “GD” package is developed for computation. Results show that the parameter optimization process can further extract geographical characteristics and information contained in spatial explanatory variables in the geographical detector model. The improved model can be flexibly applied in both global and regional spatial analysis for various types of spatial data. Thus, the OPGD model can improve the overall capacity of spatial stratified heterogeneity analysis. The OPGD model and its diverse solutions can contribute to more accurate, flexible, and efficient spatial heterogeneity analysis, such as spatial patterns investigation and spatial factor explorations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号