首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   

2.
Large-scale vegetation restoration has been helpful to prevent serious soil erosion, but also has aggravated water scarcity and resulted in soil desiccation below a depth of 200 cm in the Loess Plateau of China. To understand the dynamic mechanism of soil desiccation formation is very important for sustainable development of agriculture in the Loess Plateau. Based on natural and simulated rainfall, the characteristics of soil water cycle and water balance in the 0–400 cm soil layer on a steep grassland hillslope in Changwu County of Shaanxi Loess Plateau were investigated from June to November in 2002, a drought year with annual rainfall of 460 mm. It was similarly considered to represent a rainy year with annual rainfall of 850 mm under simulated rainfall conditions. The results showed that the temporal variability of water contents would decrease in the upper 0–200 cm soil layer with the increase in rainfall. The depth of soil affected by rainfall infiltration was 0–200 cm in the drought year and 0–300 cm in the rainy year. During the period of water consumption under natural conditions, the deepest layer of soil influenced by evapotranspiration (ET) rapidly reached a depth of 200 cm on July 21, 2002, and soil water storage decreased by 48 mm from the whole 0–200 cm soil layer. However, during the same investigation period under simulated rainfall conditions, soil water storage in the 0–400 cm soil layer increased by only 71 mm, although the corresponding rainfall was about 640 mm. The extra-simulated rainfall of 458 mm from May 29 to August 10 did not result in the disappearance of soil desiccation in the 200–400 cm deep soil layer. Most infiltrated rainwater retained in the top 0–200 cm soil layer, and it was subsequently depleted by ET in the rainy season. Because very little water moved below the 200 cm depth, there was desiccation in the deep soil layer in drought and normal rainfall years.  相似文献   

3.
To investigate contemporary neotectonic deformation in İzmir, Western Anatolia and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2001. Combination of three spatially dense GPS campaigns in 2001, 2003 and 2004 with temporally dense campaigns between 1992 and 2004 resulted in a combined velocity field representing active deformation rate in the region. We computed horizontal and vertical velocity fields with respect to Earth-centered, Earth-fixed ITRF2000, to Eurasia and to Anatolia as well.The rates of principal and shear strains along with rigid-body rotation rates were derived from velocity field. Results show east–west shortening between Karaburun Peninsula and northern part of İzmir Bay together with the extension of İzmir Bay in accordance with general extension regime of Western Anatolia and Eastern Agea. East–west shortening and north–south extension of Karaburun Peninsula are closely related to right-lateral faulting and a clockwise rotation. There exists a block in the middle of the peninsula with a differential motion at a rate of 3–5 ± 1 mm/year and 5–6 ± 1 mm/year to the east and south, respectively.As is in Western Anatolia, north–south extension is dominant in almost all parts of the region despite the fact that they exhibit significantly higher rates in the middle of the peninsula. Extensional rates along Tuzla Fault lying nearly perpendicular to İzmir Bay and in its west are maximum in the region with an extension rate of 300–500 ± 80–100 nanostrain/year and confirm its active state. Extensional rates in other parts of the region are at level of 50–150 nanostrain/year as expected in the other parts of Western Anatolia.  相似文献   

4.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

5.
Recordings of the ground motion induced by two shallow (15–25 km deep), distant (300 and 605 km) earthquakes made on deep, soft lacustrine sediments at Texcoco, Valley of Mexico, show a late monochromatic response at 0.48 Hz. Data from a strong-motion recorder array show that this late response is consistent with slow (60 m/s group velocity) Rayleigh waves generated near the 6 km distant soft/stiff soil interface of the ex-lake surface margin. It is concluded that the excitation of local Rayleigh waves in soft soil deposits by arriving earthquake ground motion provides one mechanism to explain the prolonged duration of resonant motion on soft soils, and hence the extreme damage often associated with soft soils responding to distant earthquakes.  相似文献   

6.
Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943–1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8–2.2 km/s drastically low compared to the results (3.0–4.0 km/s) in 1954; in addition, the velocity is 0.3–0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.  相似文献   

7.
—Geodetic measurements of crustal deformation over large areas deforming at slow rates (<5 mm/yr over more than 1000 km), such as the Western Mediterranean and Western Europe, are still a challenge because (1) these rates are close to the current resolution of the geodetic techniques, (2) inaccuracies in the reference frame implementation may be on the same order as the tectonic velocities. We present a new velocity field for Western Europe and the Western Mediterranean derived from a rigorous combination of (1) a selection of sites from the ITRF2000 solution, (2) a subset of sites from the European Permanent GPS Network solution, (3) a solution of the French national geodetic permanent GPS network (RGP), and (4) a solution of a permanent GPS network in the western Alps (REGAL). The resulting velocity field describes horizontal crustal motion at 64 sites in Western Europe with an accuracy on the order of 1 mm/yr or better. Its analysis shows that Central Europe behaves rigidly at a 0.4 mm/yr level and can therefore be used to define a stable Europe reference frame. In that reference frame, we find that most of Europe, including areas west of the Rhine graben, the Iberian peninsula, the Ligurian basin and the Corsica-Sardinian block behaves rigidly at a 0.5 mm/yr level. In a second step, we map recently published geodetic results in the reference frame previously defined. Geodetic data confirm a counterclockwise rotation of the Adriatic microplate with respect to stable Europe, that appears to control the strain pattern along its boundaries. Active deformation in the Alps, Apennines, and Dinarides is probably driven by the independent motion of the Adriatic plate rather than by the Africa-Eurasia convergence. The analysis of a global GPS solution and recently published new estimates for the African plate kinematics indicate that the Africa-Eurasia plate motion may be significantly different from the NUVEL1A values. In particular, geodetic solutions show that the convergence rate between Africa and stable Europe may be 30–60% slower than the NUVEL1A prediction and rotated 10–30° counterclockwise in the Mediterranean.  相似文献   

8.
In this paper, a simple two-dimensional soil–structure interaction model, based on Biot's theory of wave propagation in fluid saturated porous media, is used to explain the observed increase of the apparent frequencies of Millikan library in Pasadena, California, during heavy rainfall and recovery within days after the rain. These variations have been measured for small amplitude response (to microtremors and wind excitation), for which Biot's linear theory is valid. The postulated hypothesis is that the observed increases in frequency are due to the water saturation of the soil. The theoretical model used to explore this hypothesis consists of a shear wall supported by a circular foundation embedded in a poroelastic half-space. This rigid foundation model may be appropriate only for the NS response of Millikan library. This paper presents results for the foundation stiffness, and for the system response for model parameters similar to those for Millikan library (located on alluvium with shear wave velocity of about 300 m/s). The foundation impedance matrix, foundation input motion and system response are compared for dry and fully saturated half-space, with permeable and impermeable foundation. The results show that for embedded foundations, the effects of saturation on the horizontal foundation stiffness are as significant as for the vertical stiffness, contrary to what has been known for surface foundations investigated by other authors. Further, the results suggest a 1–2% increase in system frequency of the first two modes of vibration, depending on the drainage condition along the foundation–soil interface. Such increases agree qualitatively with the observations.  相似文献   

9.
It is recognized that soil improvement techniques are not economically feasible for mitigation of liquefaction-induced lifeline damages because of the large areas served. Instead, it is more practical to execute an emergency action immediately after an earthquake in order to prevent or minimize possible lifeline failures caused by the soil liquefaction. Essential element in the implementation of such a plan is the real-time identification of liquefied sites, which can be successfully achieved by analyzing surface strong motion records. In this paper, the thresholds of two ground motion parameters—the peak surface velocity and horizontal shaking frequency of the ground—that are associated with the soil liquefaction are assessed utilizing the theory of one-dimensional wave propagation in linearly elastic medium. Obtained simple expressions for both parameters are used to estimate their ranges and are examined against several case histories. Minimum level of peak ground velocity (PGV) is verified by experimental data from shaking-table test. Linear relationships between amplitude ground motion parameters at liquefied-soil sites are also developed. Results suggest that liquefaction is likely to take place when PGV exceeds 0.10 m/s and that the upper bound of horizontal ground vibration frequency after liquefaction occurrence is 1.3–2.3 Hz.  相似文献   

10.
Cones can be used to model soil in a unified strength-of-materials approach. For the vertical and rocking motions involving predominantly compressional-extensional deformation, the corresponding dilatational wave velocity tends to infinity for Poisson's ratio approaching 1/2. Based on the rigorous solution for the dynamic stiffness of a rigid disk for all frequencies, whereby the partition of the power among P-, S- and Rayleigh waves is also discussed, two special features are necessary for the vertical and rocking motions for nearly incompressible soil with Poisson's ratio between 1/3 and 1/2: (1) The appropriate wave velocity is selected as twice the shear wave velocity and not as the dilatational wave velocity; (2) A trapped mass which increases linearly with Poisson's ratio is introduced. The trapped mass can be assigned to the base mat, allowing the cone model to be constructed in the same way for all Poisson's ratios. The realization of cone models for surface foundations on a homogeneous half-space and on a layer on a flexible half-space and for embedded and pile foundations is addressed.  相似文献   

11.
The Central European Geodynamics Project CERGOP-2, funded by the European Union from 2003 to 2006 under the 5th Framework Programme, benefited from repeated measurements of the coordinates of epoch and permanent GPS stations of the Central European GPS Reference Network (CEGRN), starting in 1994. Here we report on the results of the systematic processing of available data up to 2005. The analysis has yielded velocities for some 60 sites, covering a variety of Central European tectonic provinces, from the Adria Indenter to the Tauern Window, the Dinarides, the Pannonian Basin, the Vrancea Seismic Zone and the Carpathian Mountains. The estimated velocities define kinematical patterns which outline, with varying spatial resolution depending on the station density and history, the present-day surface kinematics in Central Europe. Horizontal velocities are analyzed after removal from the ITRF2000 estimated velocities of a rigid rotation accounting for the mean motion of Europe: a 2.3 mm/year north–south oriented convergence rate between Adria and the Southern Alps that can be considered to be the present-day velocity of the Adria Indenter relative to the European Foreland. An eastward extrusion zone initiates at the Tauern Window. The lateral eastward flow towards the Pannonian Basin exhibits a gentle gradient from 1 to 1.5 mm/year immediately east of the Tauern Window to zero in the Pannonian Basin. This kinematic continuity implies that the Pannonian plate fragment recently suggested by seismic data does not require a specific Eulerian pole. On the southeastern boundary of the Adria microplate, we report a velocity drop from 4 to 4.5 mm/year motion near Matera to 1 mm/year north of the Dinarides, in the southwestern part of the Pannonian Basin. A positive velocity gradient as one moves south from West Ukraine across Rumania and Bulgaria is estimated to be 2 mm/year on a scale of 600–800 km, as if the crust were dragged by the counterclockwise rotation along the North Anatolian Fault Zone. This regime apparently does not interfere with the Vrancea Seismic Zone: earthquakes there are sufficiently deep (>100 km) that the brittle deformation at depth can be considered as decoupled from the creep at the surface. We conclude that models of the Quaternary tectonics of Central and Eastern Europe should not neglect the long wavelength, nearly aseismic deformation affecting the upper crust in the Romanian and Bulgarian regions.  相似文献   

12.
In this paper, data obtained by the 1995, 1996 and 1999 three GPS campaigns in North China have been used to study intraplate tectonic block movements in this area (N36°–N42°, and E112°–E120°). By a Bayesian inversion method, negative dislocation distributions on three main fault zones and individual relative movements between four intraplate tectonic blocks have been obtained based on these GPS data. The results show that the relative movements between four intraplate tectonic plates are several millimeters per year. The obtained negative dislocation values on the Front Tai-Hong Mountain fault are −5±2 mm/a in tensile component, and 2±2 mm/a in both strike and dip component, which indicates that this fault mainly suffers pull apart tectonic movements. On the Tangshan–Ninghe fault, the obtained negative dislocation values are −3±3 mm/a in dip, −2±2 mm/a in tensile and −1±3 mm/a in strike, which indicates that the east part of this fault still undergoes upward movement. On the Zhangjiako–Beipiao fault, the obtained negative dislocation values are −4±2 mm/a in strike, 0±2 mm/a in dip, and 1±2 mm/a in tensile, which indicates that this fault has sinistral strike movement. According to the inversion results, the southern part of the Zhangjiako-Beipiao fault suffers pull tectonic movements caused by recent upward movement of the eastern part. The pulling tectonic movements are almost totally blocked on the Front Tai-Hong Mountain fault and this fault is more likely to be a potential earthquake source.  相似文献   

13.
Summary In 1976 and 1977, seismic profiles were carried out in Guadeloupe. Two profiles were established in the area of La Soufriére volcano and one profile through the northern part of Guadeloupe and southern part of Grande Terre. The two first profiles were occupied from 1 to 30 km and the third profile between 5 and 50 km.The interpretation shows that the superficial structures are characterized by a three-layers model: the compressional velocity is about 2.7 to 3.0 km/s down to a depth from 1 to 3 km. Below this, the velocity is between 4.0 and 4.5 km/s in a layer whose thickness varies from 1 to 2.5 km. Under this layer we find a 6.0–6.1 km/s layer which is one of the two known crustal layer under Lesser Antilles. The boundary between the old and new are which form the Lesser Antilles arc, is marked by a thicker layer of sediments on the eastern flank of recent volcanic chain.
  相似文献   

14.
Lateral heterogeneities in the mantle can be caused by thermal, chemical and non-isotropic pre-stress effects. Here, we investigate the possibility of using observations of the glacial isostatic adjustment (GIA) process to constrain the thermal contribution to lateral variations in mantle viscosity. In particular, global historic relative sea level, GPS in Laurentide and Fennoscandia, altimetry together with tide-gauge data in the Great Lakes area, and GRACE data in Laurentide are used. The lateral viscosity perturbations are inferred from the seismic tomography model S20A by inserting the scaling factor β to determine the contribution of thermal effects versus compositional heterogeneity and non-isotropic pre-stress effects on lateral heterogeneity in mantle viscosity. When β = 1, lateral velocity variations are caused by thermal effects alone. With β < 1, the contribution of thermal effect decreases, so that for β = 0, there is no lateral viscosity variation and the Earth is laterally homogeneous. These lateral viscosity variations are superposed on four different reference models which differ significantly in the lower mantle viscosity. The Coupled Laplace Finite Element method is used to predict the GIA response on a spherical, self-gravitating, compressible, viscoelastic Earth with self-gravitating oceans, induced by the ICE-4G deglaciation model.Results show that the effect of β on uplift rates and gravity rate-of-change is not simple and involves the trade-off between the contribution of lateral viscosity variations in the transition zone and in the lower mantle. Models with small viscosity contrast in the lower mantle cannot explain the observed uplift rates in Laurentide and Fennoscandia. However, the RF3S20 model with a reference viscosity profile simplified from Peltier's VM2 with the value of β around 0.2–0.4 is found to explain most of the global RSL data, the uplift rates in Laurentide and Fennoscandia and the BIFROST horizontal velocity data. In addition, the changes in GIA signals caused by changes in the value of β are large enough to be detected by the data, although uncertainty in other parameters in the GIA models still exists. This may encourage us to further utilize GIA observations to constrain the thermal effect on mantle lateral heterogeneity as geodetic and satellite gravity measurements are improved.  相似文献   

15.
The assumption that volcanic tremor may be generated by deterministic nonlinear source processes is now supported by a number of studies at different volcanoes worldwide that clearly demonstrate the low-dimensional nature of the phenomenon. We applied methods based on the theory of nonlinear dynamics to volcanic tremor events recorded at Sangay volcano, Ecuador in order to obtain more information regarding the physics of their source mechanism. The data were acquired during 21–26 April 1998 and were recorded using a sampling interval of 125 samples s–1 by two broadband seismometers installed near the active vent of the volcano. In a previous study Johnson and Lees (2000) classified the signals into three groups: (1) short duration (<1 min) impulses generated by degassing explosions at the vent; (2) extended degassing chugging events with a duration 2–5 min containing well-defined integer overtones (1–5 Hz) and variable higher frequency content; (3) extended degassing events that contain significant energy above 5 Hz. We selected 12 events from groups 2 and 3 for our analysis that had a duration of at least 90 s and high signal-to-noise ratios. The phase space, which describes the evolution of the behavior of a nonlinear system, was reconstructed using the delay embedding theorem suggested by Takens. The delay time used for the reconstruction was chosen after examining the first zero crossing of the autocorrelation function and the first minimum of the Average Mutual Information (AMI) of the data. In most cases it was found that both methods yielded a delay time of 14–18 samples (0.112–0.144 s) for group 2 and 5 samples (0.04 s) for group 3 events. The sufficient embedding dimension was estimated using the false nearest neighbors method which had a value of 4 for events in group 2 and was in the range 5–7 for events in group 3. Based on these embedding parameters it was possible to calculate the correlation dimension of the resulting attractor, as well as the average divergence rate of nearby orbits given by the largest Lyapunov exponent. Events in group 2 exhibited lower values of both the correlation dimension (1.8–2.6) and largest Lyapunov exponent (0.013–0.022) in comparison with the events in group 3 where the values of these quantities were in the range 2.4–3.5 and 0.029–0.043, respectively. Theoretically, a nonlinear oscillation described by the equation ++g(x)=fcost can generate deterministic signals with characteristics similar to those observed in groups 2 and 3 as the values of the parameters ,,f, are drifting, causing instability of orbits in the phase space.  相似文献   

16.
Meteor radar measurements of winds near 95 km in four azimuth directions from the geographic South Pole are analyzed to reveal characteristics of the 12-h oscillation with zonal wavenumber one (s = 1). The wind measurements are confined to the periods from 19 January 1995 through 26 January 1996 and from 21 November 1996 through 27 January 1997. The 12-h s = 1 oscillation is found to be a predominantly summertime phenomenon, and is replaced in winter by a spectrum of oscillations with periods between 6 and 11.5 h. Both summers are characterized by minimum amplitudes (5–10 ms–1) during early January and maxima (15–20 ms–1) in November and late January. For 10-day means of the 12-h oscillation, smooth evolutions of phase of order 4–6 h occur during the course of the summer. In addition, there is considerable day-to-day variability (±5–10 ms–1 in amplitude) with distinct periods (i.e., 5 days and 8 days) which suggests modulation by planetary-scale disturbances. A comparison of climatological data from Scott Base, Molodezhnaya, and Mawson stations suggests that the 12-h oscillation near 78°S is s = 1, but that at 68°S there is probably a mixture between s = 1 and other zonal wavenumber oscillations (most probably s = 2). The mechanism responsible for the existence of the 12-h s = 1 oscillation has not yet been identified. Possible origins discussed herein include in situ excitation, nonlinear interaction between the migrating semidiurnal tide and a stationary s = 1 feature, and thermal excitation in the troposphere.  相似文献   

17.
Summary The problem of expressing analytically the magnetic torque, acting on the electrically conducting part of the Earth's mantle, is treated as a function of the system of convection on the surface of the core. The changes of velocities in the system of convection are estimated for decadic changes of the Earth's rotation and for the perturbation of the Earth's rotation in 1897. As regards the decadic changes of the Earth's rotation a change of velocity in the system of convection at the surface of the core of the order of 10–4 m/s corresponds, and as regards the perturbation of the Earth's rotation in 1897 (10–3 s/year) a change of velocity of 10–3 m/s reduced to the whole surface of the core corresponds, and 10–2 m/s corresponds for the region of the focus of the world geomagnetic anomaly (dimension of this region is 106 m).  相似文献   

18.
Zusammenfassung Der Lichtstrahlengang der Hohlwelt führt auf bekannte seismische Probleme, die Mittels der Variationsrechnung gelöst werden. Die Wellengeschwindigkeit im Hohlweltmodell ist bei kreisförmigen Lichtwegen nicht linear, wie bisher irrtümlich angenommen wurde, sondern quadratisch von der Entfernung vom Zentrum abhängig. Die Formel der Hohlweltoptik, welche die Singularität im Weltzentrum vermeidet, wird aufgestellt.
Summary The Fermat's principle states that a given ray of waves follows a particular path so that it travels from a given point to a second point in a minimum amount of time. In geometrical optics the basic laws of refraction and reflexion are a consequence of this principle. In homogeneous media the raypaths are straight lines. In inhomogeneous media (as it is the case in seismic prospecting) the raypaths are curved lines. The solutions of these problems take place with integral calculus (variational calculus). — Also in astronomy exist similar problems like in seismic prospecting. The path which a lightray follows in concave world leads likewise to a problem of variational calculus. — In the case of a linear increasing in velocity with the depth of waves, the raypaths are circles. — If velocity increases linear with the distance from a centre the raypaths are spirals. — In concave world the velocity is proportional to the square of the distance from a centrepoint and not linear, as an other author supposed it. That follows out of the circular raypaths. — It is stated that in case of the circular paths of lightrays in concave world the centre is an uncertainty. Here are no definit paths of lightrays. This deficiency can be eliminated by absuming a sphere around the centre on the surface of which the raypaths end. The equation for this case is determinated.
  相似文献   

19.
Analysis of the refracted arrivals on a seismic reflection profile recorded along the wall of a tunnel at an iron mine near Thabazimbi, South Africa, shows variations in P-wave velocity in dolomite away from the de-stressed zone that vary between 4.4 and 7.2 km/s, though values greater than 5.8 km/s predominate along most of the profile. The seismic velocities at the tunnel wall, however, vary between 4.2 and 5.2 km/s. Time–depth terms are in the range from 0.1 to 0.9 ms, and yield thicknesses of the zone disturbed by the tunnel excavations of between 2 and 9 m. The very low seismic velocities away from the tunnel wall in two regions are associated with alcoves or ‘cubbies’ involving offsets in the wall of up to 10 m. The large variations in seismic velocity resolved over distances less than 15 m with signals of wavelength around 6–9 m are attributed to variations in the sizes and concentrations of fracture systems and cracks, and in the degree of groundwater saturation of the fracture systems. The results suggest that seismic velocity variations from reflection surveys may also assist modelling studies of the stress regime in deep mines, particularly if both P and S wave velocity variations can be determined. The seismic velocity variations inferred also show that application of refraction static corrections in the processing of ‘in-mine’ seismic reflection profiles is as important as in surface surveys, because of the higher frequencies of the seismic energy recorded in the deep mine environment.  相似文献   

20.
The influence of global warming in Earth rotation speed   总被引:1,自引:0,他引:1  
The tendency of the atmospheric angular momentum (AAM) is investigated using a 49-year set of monthly AAM data for the period January 1949–December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976–1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere–earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD). The AAM rise is significant to the budget of angular momentum of the global atmosphere–earth system; its value in milliseconds/century (ms/cy) is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy). The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949–1997, the global marine + land-surface tempera- ture increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere’s dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号