首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here results for the Andra Couplex 1 test case, obtained with the code Cast3m. This code is developped at the CEA (Commissariat l'nergie atomique) and is used mainly to solve problems of solid mechanics, fluid mechanics and heat transfers. Different types of discretization are available, among them finite element, finite volume and mixed hybrid finite element method. Cast3m is also a componant of the platteform Alliances (co-developped by Andra, CEA), which will be used by Andra for the safety calculation of an underground waste disposal in year 2004. We solve the Darcy equation for the water flow and a convection–diffusion transport equation for the Iodine 129 which escapes from a repository cave into the water. The water flow is calculated with a MHFE discretization. It is shown that this method provides sharp results even on relatively coarse grids. The convection–diffusion transport equation is discretized with FE (Finite Element), MHFE (Mixed Hybrid Finite Element) and FV (Finite Volume) methods. In our comparison, we point out the differences of these methods in term of accuracy, respect of the maximum principle and calculations cost. Neither the finite element nor the mixed hybrid finite element approach respects the maximum principle. This results in the presence of negative concentrations near the repository cave, whereas FV calculations respect the monotonicity. We show that mass lumping techniques suppress this problem but with strong restrictions on the grid. FE and MHFE approaches are more accurate than FV for the diffusion equation, but the overall results are equivalent since the advective terms are dominant in the far field and are discretized with centered schemes. We conclude by studying the influence of the grid: a very fine grid near the repository solves almost all the problems of monotonicity, without employing mass lumping techniques. We also observed a very important increase of the accuracy on a structured grid made up of rectangles.  相似文献   

2.
区域分解法(DDM)是20世纪90年代兴起的一种求解偏微分方程的新方法,方法本身独到的耦合思想和高效的并行计算机理,对于求解复杂的、大型的地下水问题具有相当的优势和广阔的应用前景。本文以淄博市王旺庄水源地地下水流模型为例,应用重叠型区域分解法(DDM)构造了边界单元法(BEM)与有限单元法(FEM)耦合模型,在两种数值方法各自优点的基础上,更形象地再现了实际水文地质原型,有效地消除了人为边界造成的流场失真。  相似文献   

3.
We give some results obtained for the Couplex test cases proposed by the ANDRA. In this paper our aim is twofold. Firstly, to compute the release of nuclides out of the repository by concentrating on the 3D near field (Couplex 2). The simulation of the transport phenomena takes into account the dissolution of the glass containers and congruent emissions of the radio-nuclides including filiation chains and some simplified chemistry. Secondly, it is to use the near field computations in order to simulate the nuclide migrations in a 2D far field (Couplex 3). Coupling in between the two simulations takes into consideration the periodicity of the disposal modules and the geometry of the repository described in Couplex 1. The mixed finite element and discontinuous Galerkin methods are used to solve the convection–diffusion equations. In order to handle the nonlinear precipitation/dissolution term, we developed a new iterative technique that combines Picard and Newton–Raphson methods.  相似文献   

4.
奥陶系灰岩构造、岩溶发育,对许多井田安全开采构成严重威胁。利用放水试验及数值模拟方法可以有效地查明该含水层主要水文地质特征。运用区域分解法的基本思想对某井田放水试验进行数值模拟。根据井田内的主要构造分布及性质,选择界面上通量一致的条件将原问题分解为各子域问题,各子域内采用有限单元法求解。模拟结果显示区域分解算法可以有效的应用于矿区含水层地下水运动的数值模拟。  相似文献   

5.
A time‐domain viscous‐spring transmitting boundary is presented for transient dynamic analysis of saturated poroelastic media with linear elastic and isotropic properties. The u–U formulation of Biot equation in cylindrical coordinate is adopted in the derivation. By this general viscous‐spring boundary, the effective stress and pore fluid pressure on the truncated boundary of the computational area are replaced by a set of continuously distributed spring and dashpot elements, of which the parameters are defined assuming an infinite permeability and considering the two dilatational waves. Numerical examples demonstrate good absorption of both the two cylindrical dilatational waves by the proposed ‘drained’ boundary. For general two‐dimensional wave propagation problems, acceptable accuracy can still be achieved by setting the proposed boundary relatively far away from the scatter. Numerical comparison shows that the results obtained by using this boundary are more accurate for all permeability values than those by the traditional viscous‐spring or viscous boundaries established for u–U formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We derive the governing equations for the dynamic response of unsaturated poroelastic solids at finite strain. We obtain simplified governing equations from the complete coupled formulation by neglecting the material time derivative of the relative velocities and the advection terms of the pore fluids relative to the solid skeleton, leading to a so‐called us ? pw ? pa formulation. We impose the weak forms of the momentum and mass balance equations at the current configuration and implement the framework numerically using a mixed finite element formulation. We verify the proposed method through comparison with analytical solutions and experiments of quasi‐static processes. We use a neo‐Hookean hyperelastic constitutive model for the solid matrix and demonstrate, through numerical examples, the impact of large deformation on the dynamic response of unsaturated poroelastic solids under a variety of loading conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
三维油藏中应力与渗流的摄动-有限元分析   总被引:2,自引:0,他引:2  
陈洁  李尧臣 《岩土力学》2000,21(2):113-118
提出了一个较为实际的石油油藏的三维力学模型。以已有的三维介质中应力与渗流耦合问题的变分原理为基础,用摄动法证明了光油藏厚度变化为小量时,三维问题或简化为平面应变问题,并可采用不同厚度的平面应变单元进行有限元分析,所得到的解即是该三维问题的零阶摄动解。给出了摄动法的推导和有限元格式,计算了一个水驱法进行油田二次开发的算例并给出了计算结果。  相似文献   

8.
This paper presents a fracture mapping (FM) approach combined with the extended finite element method (XFEM) to simulate coupled deformation and fluid flow in fractured porous media. Specifically, the method accurately represents the impact of discrete fractures on flow and deformation, although the individual fractures are not part of the finite element mesh. A key feature of FM‐XFEM is its ability to model discontinuities in the domain independently of the computational mesh. The proposed FM approach is a continuum‐based approach that is used to model the flow interaction between the porous matrix and existing fractures via a transfer function. Fracture geometry is defined using the level set method. Therefore, in contrast to the discrete fracture flow model, the fracture representation is not meshed along with the computational domain. Consequently, the method is able to determine the influence of fractures on fluid flow within a fractured domain without the complexity of meshing the fractures within the domain. The XFEM component of the scheme addresses the discontinuous displacement field within elements that are intersected by existing fractures. In XFEM, enrichment functions are added to the standard finite element approximation to adequately resolve discontinuous fields within the simulation domain. Numerical tests illustrate the ability of the method to adequately describe the displacement and fluid pressure fields within a fractured domain at significantly less computational expense than explicitly resolving the fracture within the finite element mesh. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
边界元区域分解算法在地下水中的应用   总被引:3,自引:0,他引:3  
宋丽红  杨天行 《世界地质》2002,21(1):50-52,62
将边界元方法与区域分解算法进行耦合,结合两种方法的优点,并将此方法应用到地下水中,并计算了承压含水层稳定流问题。对非稳定问题则需通过变量替换和Laplace变换,将含时间变量的问题化成只含空间变量的问题,再针对Laplace变换解求其逆变换即可。  相似文献   

10.
岩土工程百万以上自由度有限元并行计算   总被引:3,自引:0,他引:3  
张友良  冯夏庭 《岩土力学》2007,28(4):684-688
讨论了大规模有限元并行计算需要解决的并行策略、大量数据的分布存储、方程组迭代求解和程序实现等问题。采用区域分解的“分而治之”的并行策略实现有限元并行。结合区域分解并行策略,将每个子区域的数据信息存储在相应的各个计算机上,实现存储局部化,大大减少并行计算中的通讯量,同时可以实现大规模计算。采用Schur补和共轭梯度法来实现方程组的并行求解,解决岩土有限元病态方程组的求解。采用面向对象的编程技术开发了并行有限元程序。对两个大规模算例进行了并行计算,得到了较好的结果。  相似文献   

11.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
应用微分求积区域分裂法求解非线性奇异摄动问题。数值实验结果表明,该法准确度高,计算量少。  相似文献   

13.
Modeling the flow in highly fractured porous media by finite element method (FEM) has met two difficulties: mesh generation for fractured domains and a rigorous formulation of the flow problem accounting for fracture/matrix, fracture/fracture, and fracture/boundary fluid mass exchanges. Based on the recent theoretical progress for mass balance conditions in multifractured porous bodies, the governing equations for coupled flow and deformation in these bodies are first established in this paper. A weak formulation for this problem is then established allowing to build a FEM. Taking benefit from recent development of mesh‐generating tools for fractured media, this weak formulation has been implemented in a numerical code and applied to some typical problems of hydromechanical coupling in fractured porous media. It is shown that in this way, the FEM that has proved its efficiency to model hydromechanical phenomena in porous media is extended with all its performances (calculation time, couplings, and nonlinearities) to fractured porous media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a fully coupled finite element formulation for partially saturated soil as a triphasic porous material, which has been developed for the simulation of shield tunnelling with heading face support using compressed air. While for many numerical simulations in geotechnics use of a two‐phase soil model is sufficient, the simulation of compressed air support demands the use of a three‐phase model with the consideration of air as a separate phase. A multiphase model for soft soils is developed, in which the individual constituents of the soil—the soil skeleton, the fluid and the gaseous phase—and their interactions are considered. The triphasic model is formulated within the framework of the theory of porous media, based upon balance equations and constitutive relations for the soil constituents and their mixture. An elasto‐plastic, cam–clay type model is extended to partially saturated soil conditions by incorporating capillary pressure according to the Barcelona basic model. The hydraulic properties of the soil are described via DARCY 's law and the soil–water characteristic curve after VAN GENUCHTEN . Water is modelled as an incompressible and air as a compressible phase. The model is validated by means of selected benchmark problems. The applicability of the model to geotechnical problems is demonstrated by results from the simulation of a compressed air intervention in shield tunnelling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Double Porosity Finite Element Method for Borehole Modeling   总被引:2,自引:0,他引:2  
Summary. This paper considers the mechanical and hydraulic response around an arbitrary oriented borehole drilled in a naturally fractured formation. The formation is treated as a double porosity medium consisting of the primary rock matrix as well as the fractured systems, which are each distinctly different in porosity and permeability. The poro-mechanical formulations that couple matrix and fracture deformations as well as fluid flow aspects are presented. A double porosity and double permeability finite element solution for any directional borehole drilled in the fractured porous medium is given. Compared with conventional single-porosity analyses, the proposed double-porosity solution has a larger pore pressure in the matrix and a smaller tensile stress in the near-wellbore region. The effects of time, fracture, mud weight, and borehole inclination in the double-porosity solution are parametrically studied to develop a better understanding of physical characteristics governing borehole problems.  相似文献   

16.
流体饱和两相多孔介质动力反应计算分析   总被引:1,自引:1,他引:1  
基于流体饱和两相多孔介质的弹性波动方程组,运用显式逐步积分格式与局部透射人工边界相结合的时域显式有限元方法对该波动方程组进行求解,对两相介质在输入地震波作用下的弹性动力反应进行计算和分析;对在是否考虑孔隙流体渗流的两种情况下计算得到的两相介质弹性动力反应结果的差异进行对比研究,从而揭示孔隙流体渗流对两相介质动力反应性质的影响。计算结果表明:两相介质弹性动力反应时程的波形与入射地震波的波形相同,且弹性动力反应的峰值出现的时刻对应于入射地震波的峰值出现的时刻;孔隙流体的渗流将对两相介质的弹性动力反应性质产生显著的影响。数值计算同时表明,时域显式有限元方法是进行流体饱和两相多孔介质弹性动力反应计算分析的一种有效的方法。  相似文献   

17.
局部平面波分解的计算精度和计算效率对高斯波数偏移存在较大的影响。笔者分析了目前常用的时间域、频率域、频率波数域3种不同域的局部平面波分解方法,给出了3种不同计算方式下局部平面波分解的具体计算公式;并结合局部平面波分解的特征,针对不同域下的局部平面波分解算法采取合理的程序设计思想, 对多组模拟数据应用不同域的局部平面波分解算法进行计算精度和计算效率的对比。通过对比分析可知, 应用频率波数域的局部平面波分解,不但提高了计算的准确度, 而且相对于时间域和频率域局部平面波分解能够提高近60%的计算效率,为下一步进行偏移成像更高效地提供了精确的数据。  相似文献   

18.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In the traditional numerical reservoir simulations, the internodal transmissibility is usually defined as the harmonic mean of the permeabilities of the adjacent grids. This definition underestimates the phase flux and the speed of the saturation front, especially for the strong heterogeneous case. In this article, the internodal transmissibility is recalculated according to the nodal analytic solution. The redefined internodal transmissibility can be used directly to calculate the multiphase flow in the numerical reservoir simulations. Numerical examples show that, compared to the traditional numerical methods, the proposed scheme makes the convergences much faster as the refinement parameter increases, and the accuracy is independent of the heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the two‐dimensional flow problem through an anisotropic porous medium containing several intersecting curved fractures. First, the governing equations of steady‐state fluid flow in a fractured porous body are summarized. The flow follows Darcy's law in matrix and Poiseuille's law in fractures. An infinite transversal permeability is considered for the fractures. A multi‐region boundary element method is used to derive a general pressure solution as a function of discharge through the fractures and the pressure and the normal flux on the domain boundary. The obtained solution fully accounts for the interaction and the intersection between fractures. A numerical procedure based on collocation method is presented to compute the unknowns on the boundaries and on the fractures. The numerical solution is validated by comparing with finite element solution or the results obtained for an infinite matrix. Pressure fields in the matrix are illustrated for domains containing several interconnected fractures, and mass balance at the intersection points is also checked. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号