首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南海夏季风爆发与西太平洋暖池区热含量及对流异常   总被引:19,自引:3,他引:19       下载免费PDF全文
利用1955~1998年逐月的上层海洋热含量资料和NCEP/NCAR再分析资料,研究了南海夏季风爆发与热带西太平洋暖池区热含量异常的关系,并对影响过程进行了探讨.结果表明:(1)热带西太平洋暖池区是热带上层海洋热含量变化最大的区域,暖池区的热含量的变化与ENSO关系密切,是ENSO循环的重要组成部分,也是影响南海夏季风爆发最明显的地区.(2)南海夏季风爆发与前期(特别是前期冬、春季)暖池热状态的变化有密切关系,当前期暖池热含量高时,南海夏季风爆发早,反之爆发晚,这与由暖池变化所产生的上空大气的对流活动密切相关;4月暖池区热含量高(低)是预报南海夏季风爆发早(晚)的一个很好指标.(3)西太平洋暖池区热含量正异常时,辐散中心位于南海—西太平洋,对流强,西太副高弱且位置偏东,季风环流(印度洋纬向环流和经向环流)和Walker环流为正距平环流;正距平的季风环流有利于低空西到西南气流的加强,南海夏季风爆发早,反之爆发晚.由暖池变化所引起的大尺度季风环流和Walker环流的异常变化可能是影响南海夏季风爆发的一个重要动力机制.  相似文献   

2.
基于POM(Princeton Ocean Model)海洋模式,对南海不同深度环流的季节性变化进行了数值模拟研究。模拟结果表明:南海表层和上层环流受季风影响,在夏季西南季风驱动下,南海表层环流在南部呈现强反气旋式结构,在南海北部则是一个弱的气旋环流;在冬季东北季风驱动下,南海表层环流结构呈气旋式,并且明显加强了沿越南沿岸向南流动的西边界流;春季和秋季为南海季风的转换期,其对应的环流特征也处于冬季环流与夏季环流的过渡流型,流速与冬季和夏季相比较弱。南海200m层环流的季节变化与表层相似。在500与1 000m层,则出现许多处中尺度漩涡,流场也变得较为紊乱。  相似文献   

3.
常锑  王铮  袁东亮 《海洋科学》2021,45(10):1-10
为研究风急流对吕宋海峡处黑潮路径的影响,本文使用1.5层约化重力浅水模式,设置了与吕宋海峡跨度相接近的缺口宽度,考虑西边界流在西边界缺口处当处于迟滞过程的临界状态时,其路径受风急流影响的动力机制,并初步探讨了在实际海陆边界条件下,实际风急流对黑潮路径的影响。结果显示,理想情况下,当西边界流处在由入侵流态到跨隙流态转变的临界状态时,西风、南风以及西南风风急流可以激发西边界流由入侵流态转变为跨隙流态。当西边界流处在由跨隙流态向入侵流态转变的临界状态时,北风、东风以及东北风风急流可以激发西边界流由跨隙流态转变为入侵流态,并且在风急流消失后西边界流不能再恢复到初始流态。实际情况下,冬季风急流有利于黑潮入侵南海,夏季风急流有利于黑潮跨越吕宋海峡,这和理想情况下的模拟结果以及实际观测结果相一致,这对进一步研究南海北部的上层环流以及南海的质量、能量输送有重要意义。  相似文献   

4.
冬季南海上层环流动力机制的数值研究   总被引:13,自引:2,他引:13  
通过利用一个分区性的正压-斜压衔接模式来探讨冬季南海的上层环流特征及其动力机制,结果表明:(1)在南海北部,流态主要受黑潮的影响,除了东沙群岛西南的大陆架海域以及吕宋岛北部西岸附近各为一反气旋涡外,整个南海北部为一气旋式大环流所控制.(2)在南海南部主要是风生环流,源自粤西沿岸的水体在东北季风的作用下顺南海西边界岸线向南流动,形成一支相当强的西边界流;同时,由于受北康暗沙以南的陆架坡底形效应和β效应的作用,使得在南海南部出现以一个反气旋涡在南沙海槽处产生、发展并向西传播乃至衰减的约50d的周期性过程  相似文献   

5.
利用多变量经验正交分解(MV-EOF)等方法,研究了在季节变化尺度上南海季风系统的时空分布特征。结果表明:南海夏季风的爆发时间在1993—1994年前后存在显著的年代际转型,由爆发偏晚转变成爆发偏早。第一模态表现为冬夏反位相的年周期变化,但爆发早年夏季风持续时间略长于爆发晚年,空间上都反映了南海中央海盆区的夏季强降水和850 hPa上南海北部的气旋性环流异常,但夏季风爆发早年中国华南沿海降水加强而南海南部降水偏少。相应的大范围环流场上主要反映了南海夏季风爆发后进入盛夏时节亚太地区大范围的环流特征,南海夏季风爆发偏早年索马里越赤道气流偏强,东亚季风槽位置偏北,爆发偏晚年则相反。第二模态反映了南海季风系统春秋反位相的季节变化,且秋季的振幅更强,空间降水场上对应着秋季华南沿海和南海北部与南海中南部北旱南涝的跷跷板式分布,850 hPa风场上则主要表现为异常的东北季风,该模态时空特征表明南海夏季风爆发偏早年的秋季,冬季风建立也偏早,越南及周边地区的降水偏多。相应的大范围环流场上则主要反映了冬季风的环流特征,在南海夏季风爆发偏早年的秋季,菲律宾以东的热带对流减弱,PJ波列增强,爆发晚年则相反。  相似文献   

6.
太平洋-印度洋暖池次表层水温与南海夏季风爆发   总被引:3,自引:0,他引:3  
为探索太平洋—印度洋热带海域次表层水温对南海季风的影响,用Argo剖面浮标等实测资料,分析了太平洋—印度洋暖池次表层水温异常对南海夏季风爆发的影响。结果表明:冬季,太—印暖池次表层水温偏暖(冷)时,翌年南海夏季风爆发时间偏早(晚)是主要现象。太—印暖池次表层水温偏暖,可能引起Walker环流加强,西太平洋副热带高压偏弱,中心位置偏北偏东,南海和西太平洋上空对流层下层有气旋性距平环流出现,有利于低空西到西南气流的加强,导致南海夏季风爆发偏早;太—印暖池次表层水温偏冷,可能引起Walker环流东移并减弱,西太平洋副热带高压偏强,中心位置偏南偏西,南海和西太平洋上空对流层下层有反旋性距平环流出现,不利于低空西到西南气流的加强,导致南海夏季风爆发偏晚。结论:冬季,太—印暖池次表层水温偏暖(冷),翌年南海夏季风爆发时间偏早(晚)是主要现象。  相似文献   

7.
2000年南海季风爆发前后西沙海域海-气热量交换特征   总被引:14,自引:3,他引:14       下载免费PDF全文
利用2000年5月6日至6月17日在西沙海域进行的第二次南海海-气通量观测资料,计算了南海季风爆发前后海洋-大气间的辐射收支、感热通量、潜热通量及海洋热量净收支;发现季风爆发后海-气热量交换突然发生变化,其中潜热通量、海洋热量净收支变化尤为显著。讨论了季风爆发前后各种天气过程影响下海-气热量、水汽交换特点和海洋热量净收支变化,说明季风爆发前海洋是一个能量积累过程,季风爆发期海洋是一个能量释放过程,季风中断期海洋是一个能量再积累过程;季风爆发后西南大风期持续时间和强度,强烈影响水汽蒸发量大小,进而影响我国大陆上夏季降水,通过南海与阿拉伯海、孟加拉湾、西太平洋暖池等不同海域资料对比,分析了它们在海-气热量交换上的差别,指出这种差别是爆发后南海SST基本稳定而阿拉伯海、孟加拉湾SST明显降低的主要原因。  相似文献   

8.
1990s年代际转型前后南海季风系统的季节变化   总被引:2,自引:0,他引:2  
利用多变最经验正交分解(MV-EOF)等方法,研究了在季节变化尺度上南海季风系统的时空分布特征.结果表明:南海夏季风的爆发时间在1993-1994年前后存在显著的年代际转型,由爆发偏晚转变成爆发偏早.第一模态表现为冬夏反位相的年周期变化,但爆发早年夏季风持续时间略长于爆发晚年,空间上都反映了南海中央海盆区的夏季强降水和850 hPa上南海北部的气旋性环流异常,但夏季风爆发早年中国华南沿海降水加强而南海南部降水偏少.相应的大范围环流场上主要反映了南海夏季风爆发后进人盛夏时节亚太地区大范围的环流特征,南海夏季风爆发偏早年索马里越赤道气流偏强,东亚季风槽位置偏北,爆发偏晚年则相反.第二模态反映了南海季风系统春秋反位相的季节变化,且秋季的振幅更强,空间降水场上对应着秋季华南沿海和南海北部与南海中南部北旱南涝的跷跷板式分布,850 hPa风场上则主要表现为异常的东北季风,该模态时空特征表明南海夏季风爆发偏早年的秋季,冬季风建立也偏早,越南及周边地区的降水偏多.相应的大范嗣环流场上则主要反映了冬季风的环流特征,在南海夏季风爆发偏早年的秋季,菲律宾以东的热带对流减弱,PJ波列增强,爆发晚年则相反.  相似文献   

9.
1998年4—7月南海环流结构及其演变特点的初步分析   总被引:3,自引:2,他引:1  
利用1998 年组织实施的南海季风实验两个航次的CTD观测资料, 分析了在南海季风爆发前后南海上层环流的结构及其演变特点。从重力势场的分析可知,4~5 月间南海上层水中存在三个反气旋环流、一个气旋环流(内含几个分离的闭合环流) 和一支位于加里曼丹岛和巴拉望岛西北外海的东北—西南向流;6~7 月环流形态发生了较大的变化。南海500 m 层环流的演变不同于表层和100 m 层  相似文献   

10.
南海的季节环流─TOPEX/POSEIDON卫星测高应用研究   总被引:49,自引:8,他引:49  
应用1992~1996年的TOPEX/POSEIDON卫星高度计遥感资料,研究了冬、夏季风强盛期多年平均的南海上层环流结构。研究结果表明,南海上层流结构呈明显的季节变化,在很大程度上受该海区冬、夏交替的季风支配。冬季总环流呈气旋型,并发育有两个次海盆尺度气旋型环流;夏季总环流大致呈反气旋型、但在南海东部18°N以南海域未见明显流系发育。研究还表明,南海环流的西向强化趋势明显,无论冬、夏在中南半岛沿岸和巽他陆架外缘均存在急流,其流向冬、夏相反,是南海上层环流中最强劲的一支。鉴于该海流的动力特征与海洋动力学中定义的漂流不同,有相当大的地转成分,建议称为“南海季风急流(South China Sea MonsoonJet)”.冬季南下的季风急流在南海南部受巽他陆架阻挡折向东北,沿加里曼丹岛和巴拉望岛外海有较强东北向流发育。夏季北上的季风急流在海南岛东南分为两支:北支沿陆架北上,似为传统意义上的南海暖流;南支沿18°N向东横穿南海后折向东北;二者之间(陆架坡折附近)为弱流区。两分支在汕头外海汇合后,南海暖流流速增强。就多年平均而言,黑潮只在冬季侵入南海东北部,并在南海北部诱生一个次海盆尺度的气旋型环流,这时南海暖流只出现在汕头以东海域.夏季南海北部完全受东北向流控制,未见黑潮入侵迹象.用卫星跟踪海面漂流浮标观测进行的对比验证表明,以上遥感分析结果与海上观测一致。  相似文献   

11.
1998年夏季季风爆发前后南海上层环流的诊断分析   总被引:4,自引:0,他引:4  
基于1998年南海季风试验(SCSMEX,South China Sea Monsoon Experiment)期间2个强化观测航次(4-5月及6-7)所获温盐深(CTD)资料,利用一个改进逆模式研究了夏季季风爆发前后南海环流的演变特征。诊断计算表明,在此期间南海环流主要表现为两脊两槽型,即越南以东和菲律宾以西呈反气旋式环流,南海北部和南海中部呈气旋式环流。但对局部区域而言,可以发现在季风爆发前后其环流结构有明显的差异。上述计算结果亦与等压面上海水密度分布的定性分析结果及同期观测的ADCP资料进行了比较,结果表明模式计算所得到的南海上层环流主要特征与定性分析结果及实测资料大体一致,诊断结果可作为南海上层季风环流演变机制研究的依据。  相似文献   

12.
本文利用南海海洋再分析产品REDOS(Reanalysis Dataset of the South China Sea)和风场资料CCMP(Cross-Calibrated,Multi-Platform),通过能量诊断探讨了越南沿岸南海西边界流(南海贯穿流主体部分)区域夏季(6—9月)涡流相互作用的年际变化特征以及平均流对中尺度过程的贡献。结果显示,在季风和西边界强流、南海贯穿流的共同影响下,越南沿岸东向急流和双涡结构的能量分布和收支有显著的年际差异。尽管涡动能(EKE,Eddy Kinetic Energy)和涡动有效势能(EPE,Eddy available Potential Energy)的量级基本一致,但二者在水平和垂向空间分布上存在明显差异,这与夏季风影响下的南海西部边界流,越南离岸流的上层海洋密度梯度、流速大小和剪切导致的斜压、正压不稳定性等因素相关。同时随着深度的增加,密度梯度变化相对水平速度剪切对海洋涡流过程的影响逐渐凸显。EKE能量收支分析表明,压强与风应力主要做正功,是维持EKE稳定的主要能量来源,而EKE平流项既可以促进涡旋的增长,也会造成涡旋的消耗,对EKE的年际变率影响比较显著。正压不稳定导致的能量转换主要影响南海西部边界流区域,并存在显著年际变化,并且在风和平均流的影响下,沿贯穿流方向存在显著空间分布差异。越南离岸流正异常年,整体呈现平均流向涡旋传递能量;负异常年,出现EKE反哺平均动能的情况。  相似文献   

13.
利用9层15波全球大气环流谱模式研究了太平洋海温异常对南海西南季风建立早晚的影响作用.结果表明:西-中太平洋海温异常数值试验结果最能反映出南海西南季风爆发早、晚年4~5月份大气环流的差异特征.数值试验结果显示:西太平洋海温正(负)异常可导致西太平洋副高减弱(加强);中太平洋海温正(负)异常主要使得中太平洋上空的洋中槽减弱(加深);东太平洋海温正(负)异常可造成东太平洋赤道两侧高层环流产生反气旋性(气旋性)变化,孟加拉湾-南海-西太平洋热带地区出现东风(西风)异常,西太副高加强(减弱).可见西太平洋海温异常和东太平洋海温异常都可以对副高强弱变化产生明显影响,从而对南海西南季风建立早晚产生影响,只不过西太平洋海温异常的影响作用更为显著.西太平洋正(负)海温异常与中太平洋负(正)海温异常经常是同时出现的,其激发出的与向东传的Kelvin波和向西传的行星波相联系的环流异常为南海季风建立早(晚)提供有利的条件,因而这一海温分布型是影响南海西南季风建立早晚的重要影响因子.  相似文献   

14.
2008年南海季风爆发前后西沙海域海气通量变化特征   总被引:4,自引:1,他引:3  
基于2008年4至5月在南海西沙永兴岛进行的海气通量观测试验资料和NCEP资料,应用COARE3.0通量算法计算了海气通量,分析了季风爆发前后西沙海域天气变化特点和海气通量对南海季风爆发的响应。结果表明:2008年南海季风首先于5月第1候在南海南部爆发,受热带气旋等因素的影响,北部海区季风爆发推迟到5月18日。季风爆发和热带气旋活动对西沙海域的风速和海气通量影响较大,其中热带气旋的影响更强烈。热带气旋来临之前,潜热通量、感热通量以及动量通量均较小;在气旋活动及此后的季风爆发时期,大风使潜热通量和动量通量显著增强,感热通量则在降水期间变化明显;动量通量的最大值出现在热带气旋活动期间,其在此过程中的均值是观测初期均值的3倍以上。在整个观测过程中,潜热通量明显大于感热通量,后者是前者的16∶1。不同类型天气过程中,潜热通量的日变化相似,而感热通量的日变化有差异。湍流交换系数与风速有较好的相关关系。  相似文献   

15.
通过对南海夏季风异常年夏季南海及周边地区主要海-气要素场的对比分析,得到以下主要结论:强、弱季风年夏季南海及周边地区的主要海-气要素都表现出明显的差异。强季风年夏季南海中南部地区低层西风加强、高层东风加强,以南海北部为中心存在气旋性距平环流,上升运动增强。相应地,南海及我国东南沿海地区对流和降水增强,而长江中下游地区降水偏少。弱季风年则表现出与强季风年几近相反的分布特征。此外,强季风年西太平洋副热带高压较弱季风年位置明显偏东、强度明显偏弱。与对流和降水的分布相对应,强、弱季风年夏季南海及周边地区大气热源状态的分布也表现出明显的差异,差别最显著的区域正是在南海及周边地区。在强季风年,西起孟加拉湾东至菲律宾以东的洋面上为较明显的热源增强区,而弱季风年则为明显的热源减弱区。此外,强、弱季风年,南海海域的海面高度、海洋环流、海表温度等表征海洋状况的要素分布也明显不同,分布形势几近相反。海温作为重要的外源强迫,不仅对季风环流的形成有重要作用,而且明显受到季风异常的影响,进而对局地的天气气候产生重要的滞后影响。  相似文献   

16.
通过一个全球的二维诊断模型,采用Levitus温盐资料和COADS风应力资料,并结合动力计算来研究南海上层环流的季节变化。计算结果与其它模式结果和观测结果非常相似。南海北部(南部)全年存在一气旋式(反气旋式)环流。在冬季气旋式环流几乎占据了整个南海,夏季则以反气旋式环流为主。泰国湾的环流在冬季(夏季)是气旋式的(反气旋的)。南海的西边界流有明显的季节变化,其在冬季从卡里马塔海峡流出南海,夏季部分西边界流从台湾海峡流出南海。越南离岸流在春季就开始出现,其位置比夏季的越南离岸流的位置偏北。  相似文献   

17.
南海上层环流观测研究进展   总被引:25,自引:1,他引:25  
李立 《台湾海峡》2002,21(1):114-125
回顾了近50a来南海环流研究的进展,重点介绍了近期有关南海上层总环流的观测研究成果,并就南海季风急流、南海暖流、南海南部的次海盆尺度环流,以及南海东北部环流的几个问题进行了专门讨论。  相似文献   

18.
夏季南海上层环流动力机制的数值研究   总被引:10,自引:0,他引:10  
通过利用一个分区性的正压-斜压衔接模式来探讨夏季南海的上层环流特征及其动力机制,结果表明:夏季期间,由于风生环流的不稳定性促使在东沙群岛附近的气旋涡的强度及位置发生变化,并间接导致黑潮侵入南海北部的程度变化以及气旋涡南侧的反气旋式环流、西沙群岛西南侧的气旋涡的强度和范围出现波动现象;在南海南部的北向西边界流由于离岸的西南季风所驱动在中南半岛中部沿岸脱离岸线往东北方向的流动,导致沿岸的水体大量流失而在沿岸形成一支南向补偿流并在西沙群岛西南侧诱生一气旋涡,而上述的离岸西边界流则作顺时针方向流动,从而在南海南部形成反气旋式大环流;在南沙海槽附近出现的局地气旋涡和万安滩附近的气旋涡分别受β效应、底形效应的作用而形成.  相似文献   

19.
阿拉伯海东南海域盐度收支的季节变化   总被引:4,自引:0,他引:4  
采用SODA海洋同化产品的月平均资料,本文分析了阿拉伯海东南海域表层盐度的季节变化特征,发现局地海面淡水通量不能解释盐度的变化。两个典型区域的表层海水盐度收支分析表明,海洋的平流输送是造成阿拉伯海东南海域盐度冬季降低、夏季升高的主要原因,而淡水通量仅在夏季印度西侧沿岸区域造成盐度降低。冬季,东北季风环流将孟加拉湾北部的低盐水沿同纬度输送到阿拉伯海,然后向北输送,使表层海水盐度降低;夏季,西南季风环流把阿拉伯海西北部的高盐水向南、向东输送,使阿拉伯海东南海域盐度升高。受地理位置因素的影响,阿拉伯海东南海域表层盐度的变化冬季明显强于夏季。  相似文献   

20.
林祖亨 《海洋信息》1998,(10):30-30
我国属季候风影响的地区,直接影响我国地面的大气环流是季风气流。在南海海域,气流流场的位置变化、强度、范围均有明显的季节性变化。冬季以东北或西北季风气流为主,夏季以西南和东南季风气流为主。南海海域主要受这两股季风风系的影响。 今年4月份,在5°30′N~20°30′N,108°00′E~119°00′E范围的南海海域,大范围的南海季风试验项目。这一试验被列入国家科委95攀  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号