首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
~~New paleomagnetic and magnetic fabric results for Early Cretaceous rocks from the Turpan intramontane basin,east Tianshan,northwest China~~  相似文献   

3.
Abstract Mostly siliciclastic lacustrine deposits from five stratigraphically different formations (Jinju Formation, Jindong Formation, Geoncheonri and correlative Hwasan Formations and Dadaepo Formation, in ascending order) in the Cretaceous Gyeongsang Basin, Korea, were examined for aspects of lithofacies and pedogenesis to evaluate the relative influence of geological controls on the development of palustrine calcretes (calcretes formed from palustrine deposits). The pedogenic carbonate development of palustrine deposits in the Gyeongsang Supergroup varies from formation to formation. The highest development is in the Dadaepo Formation and the second is in the Jindong Formation. The lowest development of palustrine calcretes is in the Geoncheonri and Hwasan Formations and the Jinju Formation shows intermediate development. The more negative d13C values and the less negative d18O values of the Dadaepo palustrine calcretes confirm greater pedogenic development in the Dadaepo Formation. That the highest development was in the Dadaepo Formation was attributed to it having the smallest lake size, indicating that lake size is critical to palustrine calcrete development in non‐carbonate lakes under semi‐arid climate. In spite of having the largest lake size, the higher development in the Jindong Formation could have resulted from its lowest lake gradient and most arid paleoclimate. The higher development of palustrine calcretes in the Late Cretaceous deposits (Jindong Formation) than the Early Cretaceous deposits (Jinju Formation) reflect overall increase in aridity throughout the period during the deposition of the Gyeongsang Supergroup. Consequently, the diverse development of the palustrine calcretes in the Gyeongsang Supergroup indicates that the lacustrine settings varied in time and space throughout the evolution of the Cretaceous Gyeongsang Basin. Such variation in palustrine calcrete development according to the change in paleoenvironments may provide a basis to interpret the relative paleoenvironmental condition of lacustrine deposits including paleoclimate, lake size and gradient.  相似文献   

4.
The relative contributions to total actual evapotranspiration (AET) from pond and riparian areas in a pond‐wetland complex in the Western Boreal Plain (WBP) of northern Alberta are measured using the Bowen ratio energy balance technique. Measurements show that a pond typical of the WBP evaporates at a rate more than twice that of the adjacent riparian peatland. Relating the actual to potential evapotranspiration over both surfaces yields Priestley–Taylor α coefficients of 0·69 and 1·11 for the peatland and pond respectively. Further results demonstrate that the sheltering and turbulent influences of the adjacent forested areas must be considered in the processes governing the permanence of WBP ponds. That is, forestry practices may inadvertently enhance the evaporative losses from the ponds, over and above the controls exerted by the regional climate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Southwest Tarim (hereafter SW Tarim) is one of afew areas that well developed Cretaceous marinesedimentary rocks in China [1]. The Cretaceous marinesediments are stretched in front area along the Tian-shan and Kunlun Mountains. Toward the center ofTarim Basin, the Cretaceous sediments are buried bygreat thickness of Tertiary and Quaternary sedimentswith little exposure. Compared with the Cretaceousterrestrial strata of north Tarim, the Cretaceous marinestrata of SW Tarim continue and d…  相似文献   

6.
Cretaceous climate was warmer than today.The Songliao Basin contains one of the most important Late Cretaceous non-marine deposits in China for the research of the paleoenvironment and paleoclimate.This research is based on core samples from the SK1(S)borehole.The strata sampled are the upper part of the Quantou Formation to member 2 of the Nenjiang Formation,where spores,pollen,dinoflagellates,and other microfossils are abundantly preserved.Based on analysis of the spores and pollen fossils from the core samples,the following six fossil assemblage zones have been recognized in ascending order:The Cicatricosisporites-Cyathidites-Pinuspollenites,Schizaeoisporites-Cyathidites-Classopollis,Cyathidites-Schizaeoisporites,Schizaeoisporites-Cyathidites-Proteacidites,Proteacidites-Cyathidites-Dictyotriletes,and the Lythraites-Callistipollenites-Schizaeoisporites zones.The six fossil zones range from the late Cenomanian to early Campanian.The Late Cretaceous dinoflagellate cysts in the Songliao Basin are of high abundance and low diversity.Specific phytoplankton types reflect salinity changes of the Songliao Lake.Paleoecology of the dinoflagellates suggests that sediments of members 2 and 3 of the Yaojia Formation(K2y2+3)were deposited in a freshwater environment,whereas members 2 and 3 of the Qingshankou Formation(K2q2+3)and members 1 and 2 of the Nenjiang Formation(K2n1+2)were deposited in freshwater to brackish water environments.Combined with the paleoecology of dinoflagellates and the palynomorph biozones,valuable information of the paleoclimate was provided.The quantitative analyses of spores and pollen fossils,such as vegetation type,climate type,and humidity type,diversity and dominance,indicate a relatively sub-humid,mid-subtropical paleoclimate,with slight climatic fluctuation and/or temporal change.  相似文献   

7.
松辽盆地营城组火山机构相带地震-地质解译   总被引:7,自引:0,他引:7       下载免费PDF全文
将火山机构按距火山口远近划分为火山口-近火山口、近源和远源三个相带.营城组火山机构相带有6种地震相类型,分别是丘状、透镜状、穹状、池塘状、楔状和席状地震相.丘状、透镜状和穹状均见于火山机构中心相带,但所代表的优势岩相不同,分别与爆发相、喷溢相和侵出相对应.池塘状和楔状均为近源相带,但前者以喷溢相辫状熔岩流为主,而后者代表爆发相火山碎屑岩与喷溢相熔岩互层.席状地震相是以火山沉积相为特征的远源相带为主.火山机构中心相带岩性和岩相多变、地震相复杂,这是初始喷发条件、同生垮塌、后期断裂以及孔隙和流体综合作用的结果;该带是火山岩储层发育最有利的部位.  相似文献   

8.
Abstract Mesozoic accretionary complexes of the southern Chichibu and the northern Shimanto Belts, widely exposed in the Kanto Mountains, consist of 15 tectonostratigraphic units according to radiolarian biochronologic data. The units show a zonal arrangement of imbricate structure and the age of the terrigenous clastics of each unit indicates successive and systematic southwestward younging. Although rocks in these complexes range in age from Carboniferous to Cretaceous, the trench-fill deposits corresponding to the Hauterivian, the Aptian to Middle Albian and the Turonian are missing. A close relationship between the missing accretionary complexes and the development of strike-slip basins is recognizable. The tectonic nature of the continental margin might have resulted from a change from a convergent into a transform or oblique-slip condition, so that strike-slip basins were formed along the mobile zones on the ancient accretionary complexes. Most terrigenous materials were probably trapped by the strike-slip basins. Then, the accretion of the clastic rock sequence occurred, probably as a result of the small supply of terrigenous materials in the trench. However, in the case of right-angle subduction, terrigenous materials might have been transported to the trench through submarine canyons and deposited there. Thus, the accretionary complexes grew rapidly and thickened. Changes both in oceanic plate motion and in the fluctuation of terrigenous supply due to the sedimentary trap caused pulses of accretionary complex growth during Jurassic and Cretaceous times. In the Kanto Mountains, three tectonic phases are recognized, reflecting the changes of the consuming direction of the oceanic plates along the eastern margin of the Asian continent. These are the Early Jurassic to early Early Cretaceous right-angle subduction of the Izanagi Plate, the Early to early Late Cretaceous strike-slip movement of the Izanagi and Kula Plates, and the late Late Cretaceous right-angle subduction of the Kula Plate.  相似文献   

9.
The Sindong Group forms the lowermost basin‐fill of the Gyeongsang Basin, the largest Cretaceous nonmarine basin located in southeastern Korea, and comprises the Nakdong, Hasandong, and Jinju Formations with decreasing age. The depositional age of the Sindong Group has not yet been determined well and the reported age ranges from the Valanginian to Albian. Detrital zircons from the Sindong Group have been subjected to U–Pb dating using laser ablation inductively coupled plasma mass spectrometry. The Sindong Group contains noticeable amounts of detrital magmatic zircons of Cretaceous age (138–106 Ma), indicative of continuous magmatic activity prior to and during deposition of the Sindong Group. The youngest detrital zircon age of three formations becomes progressively younger stratigraphically: 118 Ma for the Nakdong Formation, 109 Ma for the Hasandong Formation, and 106 Ma for the Jinju Formation. Accordingly, the depositional age of the Sindong Group ranges from the late Aptian to late Albian, which is much younger than previously thought. Lower Cretaceous magmatic activity, which supplied detrital zircons to the Sindong Group, changed its location spatially through time; it occurred in the middle and northern source areas during the early stage, and then switched to the middle to southern source areas during the middle to late stages. This study reports first the Lower Cretaceous magmatic activity from the East Asian continental margin, which results in a narrower magmatic gap (ca 20 m.y.) than previously known.  相似文献   

10.
The Yezo Group has a wide longitudinal distribution across Hokkaido, northern Japan. It represents a Cretaceous (Early Aptian–Late Maastrichtian) and Late Paleocene forearc basin‐fill along the eastern margin of the paleo‐Asian continent. In the Nakagawa area of northern Hokkaido, the uppermost part of the Yezo Group consists of the Hakobuchi Formation. Along the western margin of the Yezo basin, 24 sedimentary facies (F) represent 6 facies associations (FA), suggesting prevailing storm‐dominated inner shelf to shoreface environments, subordinately associated with shoreface sand ridges, outer shelf, estuary and fluvial environments. The stacking patterns, thickness and facies trends of these associations allow the discrimination of six depositional sequences (DS). Inoceramids Sphenoceramus schmidti and Inoceramus balticus, and the ammonite Metaplacenticeras subtilistriatum, provide late Early to Late Campanian age constraints to this approximately 370‐m thick final stage of deposition and uplift of the Yezo forearc basin. Six shallow‐marine to subordinately non‐marine sandstone‐dominated depositional sequences include four 10 to 110‐m thick upward‐coarsening regressive successions (FS1), occasionally associated with thin, less than 10‐m thick, upward‐fining transgressive successions (FS2). The lower DS1–3, middle DS4–5 and upper DS6 represent three depositional sequential sets (DSS1–3). These eastward prograding and westward retrograding recurring shallow‐marine depositional systems may reflect third‐ and fourth‐order relative sealevel changes, in terms of sequence stratigraphy.  相似文献   

11.
Ooid grainstone/packstone carbonate facies of the Dalan, Kangan, and Arab formations are the main hydrocarbon reservoirs in the Persian Gulf. Based on detailed petrographic and petrophysical analyses,sedimentological and mineralogical features of the Permian to Late Cretaceous carbonate and iron-rich coated grains from Zagros and the Persian Gulf were investigated. Frequent ooids in these formations indicate a high-energy environment and a wave-dominated shallow carbonate platform. Because of wi...  相似文献   

12.
Abstract Carbon isotope fluctuations of sedimentary organic matter along the two geological traverses in the Yezo Group, Hokkaido, northern Japan, elucidate a detailed chemostratigraphy for the Cenomanian Stage on the northwestern Pacific margin. Visual characterization of the kerogen from mudstone samples shows that the major constituents of sedimentary organic matter originated as terrestrial higher plants. The atomic hydrogen/carbon ratios of the kerogen suggest that the original δ13C values of terrestrial organic matter (TOM) have not been affected significantly by thermal diagenesis. The patterns in two δ13CTOM curves are similar and independent of changes in lithology and total organic carbon contents, which suggests that TOM was mixed sufficiently before the deposition in the Yezo forearc basin for the δ13C composition having been homogenized. In addition, this implies that the Hokkaido δ13CTOM profiles represent the averaged temporal δ13C variations of terrestrial higher‐plant vegetation in the hinterlands of northeast Asia during Cenomanian time. Three shorter‐term (ca. 0.1 my duration) positive‐and‐negative δ13CTOM fluctuations of ∼1‰ are present in the Lower to Middle Cenomanian interval in the Yezo Group. On the basis of the age‐diagnostic taxa (ammonoids, inoceramids and planktic foraminifers), these discrete δ13CTOM events are interpreted to be correlated with those in the δ13C curves of pelagic carbonates from European basins. The correlation of δ13C events between the European and Yezo Group sections suggests that the shorter‐term δ13C fluctuations in Cenomanian ocean‐atmosphere carbon reservoirs are useful for global chemostratigraphic correlation of marine strata. In particular, the correlation of δ13C fluctuations of the so‐called ‘Mid‐Cenomanian event’ (MCE) implies: (i) the δ13C variations of global carbon reservoir during the MCE are precisely recorded in the δ13CTOM records; and (ii) the MCE δ13CTOM event is an efficient chronostratigraphic index for the Lower/Middle Cenomanian boundary of the Mid‐Cretaceous sequences.  相似文献   

13.
川东褶皱带作为华南板块中部的"侏罗山式"褶皱,开始形成于晚古生代.自白垩纪晚期开始,受太平洋板块和印度板块对欧亚大陆挤压的影响,这一构造带乃至华南板块中部又叠加了新的构造变形.但是,目前对于川东褶皱带白垩纪以来的构造演化缺乏足够的认识.位于川东褶皱带东侧、雪峰造山带西麓的沅麻盆地形成于早白垩世.晚白垩世以来,沅麻盆地与川东褶皱带处于同一构造应力场中,因此对盆地内早白垩世红层的古地磁研究对于解释川东褶皱带中生代晚期以来的构造演化有着重要的意义.该研究在沅麻盆地早白垩世红层中开展的古地磁学研究获得了可靠的原生剩磁分量:Ds=15.6°,Is=42.9°,k=118.6,α95=2.6°,表明沅麻盆地自早白垩世以来发生了4.1°±3.0°的顺时针构造转动.对川东褶皱带周缘白垩纪古地磁数据所揭示的地壳旋转变形,与断裂和褶皱轴组成的构造线迹变化之间的线性相关性分析,表明川东褶皱带位于齐岳山断裂带东南侧的部分,受印度板块-欧亚大陆、太平洋板块-华南板块间的挤压作用,自晚白垩世以来累积了约50~93 km的右旋错断量.  相似文献   

14.
The Cretaceous system of the Kuqa depression is a regional scale (second order) depositional sequence defined by parallel unconformities or minor angular unconformities. It can be divided into four third-order sequence sets, eleven third-order sequences and tens of fourth- and fifth-order sequences. It consists generally of a regional depositional cycle from transgression to regression and is composed of three sets of facies associations: alluvial-fluvial, braided river-deltaic and lacustrine-deltaic facies associations. They represent the lowstand, transgressive and highstand facies tracts within the second-order sequence. The tectonic subsidence curve reconstructed by backstripping technique revealed that the Cretaceous Kuqa depression underwent a subsidence history from early accelerated subsidence, middle rapid subsidence and final slower subsidence phases during the Cretaceous time, with the correspondent tectonic subsidence rates being 30-35 m/Ma, 40-45 m/Ma and 5-10 m/Ma obtained from northern foredeep. This is likely attributed to the foreland dynamic process from early thrust flexural subsidence to late stress relaxation and erosion rebound uplift. The entire sedimentary history and the development of the three facies tracts are a response to the basin subsidence process. The slower subsidence foreland gentle slope was a favorable setting for the formation of braided fluvial deltaic systems during the late period of the Cretaceous, which comprise the important sandstone reservoirs in the depression. Sediment records of impermanent marine transgression were discovered in the Cretaceous and the major marine horizons are correctable to the highstands of the global sea level during the period.  相似文献   

15.

热河生物群是世界闻名的陆相生物化石宝库, 保存了大量特异埋藏化石, 为研究早白垩世脊椎动物、昆虫和植物的演化提供了绝佳的素材.依据古生物组合的不同, 将其分为早、中、晚三期, 分别赋存于河北丰宁花吉营组、辽西义县组和九佛堂组及其周边地区相当层位.河北承德—围场地区处于早-中期热河生物群分布地区的过渡地带, 近年来不断的化石发现为研究华北克拉通破坏及其对陆地生态系统的影响提供了关键证据.但由于缺乏准确的年龄约束, 对于含化石层位的准确时代及其与邻区地层对比存在较大争议.本文利用来自于河北北部承德盆地袁家庄剖面的3个安山岩样品的锆石, 进行化学熔蚀-离子探针(CA-SIMS)锆石U-Pb定年, 获得年龄为129.6~128.7 Ma.结合前人发表的磁性地层学结果建立了新的磁性地层学对比方案和新的综合年代框架, 揭示了该剖面火山-沉积序列记录了古地磁极性序列M8n-M7n, 进一步证明了袁家庄剖面的陆相火山-沉积层序属于欧特里夫晚期.结合区域内前人年代学结果, 将该区域热河生物群化石层时代限定为130~127 Ma.年代地层学对比结果显示, 承德盆地早白垩世火山-沉积序列与滦平盆地大店子组和森吉图—四岔口盆地花吉营组上部时代相当, 明显老于辽西义县组时代, 揭示了华北克拉通北缘早白垩世陆相地层的自西向东逐渐年轻的特征.

  相似文献   

16.
17.
The Arctic Ocean is almost entirely surrounded by land, with shallow openings to the Pacific through Bering Strait (~ 45 m deep) and to the Atlantic through the Barents Sea (~50—450 m deep) and Fram Strait where the sill depth is around 2500 m. The bathy…  相似文献   

18.
Abstract   Abundant dinosaur fossils including dinosaur footprints, eggs and nests, teeth and bones have been found from the Cretaceous non-marine deposits of Korea. Among them, dinosaur tracks are the most distinctive, and some track sites are among the most famous in the world. Until now, 27 dinosaur track localities have been discovered from the Cretaceous strata in the Gyeongsang Basin and several small basins. Ornithopod tracks are most abundant at most Korean track sites, and most of them are identified as Caririchnium ; that is, large ornithopod footprints with wide hoof impressions. Most theropod tracks are found in Neungju Basin and they consist of various types of small or medium-sized bird-like footprints, and other large footprints. Sauropod tracks are also abundant in the Gyeongsang Basin. The sauropod tracks vary in size, shape, and pattern of trackway, and suggest that diverse sauropods existed in this area. These diverse tracks in South Korea suggest that various dinosaurs flourished at the margins of lakes distributed in the southern part of the Korean Peninsula during the Cretaceous.  相似文献   

19.
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin.  相似文献   

20.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号