首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Chemical data on clinopyroxene phenocrysts in twenty-four lava samples from the Alban Hills (Roman comagmatic region) show coexistence, within the same rock, of two core-rim evolution trends: diopside-salite and salite-diopside, respectively. The Alban volcanics can be divided in two groups depending on which type of core predominates.Geochemical mixing tests, conducted with elements showing a different degree of incompatibility, such as Ce, Sr, Th, La, Ta, and Hf, show no evidence of a mixing process which might be responsible for coexistence of both diopside and salite clinopyroxenes within the same lava.Taking into account the results of known experiments on the influence of water on clinopyroxene composition in potassium rich lavas, the reverse zoning trend observed and the consequent predominance of salite cores in some lavas are ascribed to the effect of volatiles, and particularly to water. Changes of water pressure may also be responsible for phenocryst corrosion and salitic clinopyroxene replacement by olivine, phlogopite and titaniferous magnetite.The prominent role of water in the Alban Hills magma evolution is also supported by the high fluorine content found in the Alban products, which enhances water solubility in the magmas, by the frequent occurrence of mica in the rock groundmass and, finally, by the explosive character of Alban volcanism.
Zusammenfassung Die Ergebnisse chemischer Analysen von Klinopyroxen in vierundzwanzig Lavaproben aus den Albaner Bergen (Römische Komagmatische Region) zeigen die Koexistenz von zwei Kern-Rand-Entwicklungstendenzen: Diopsid-Salit und Salit-Diopsid. Die Vulkanite können auf Grund der Zusammensetzung der Kerne in zwei Gruppen unterteilt werden.Mit Elementen verschiedener Inkompatibilität, wie Ce, Sr, Th, La, Ta und Hf, ausgeführte Mischversuche geben keinen Hinweis dafür, daß ein Mischungsprozeß für die Koexistenz von Diopsid und Salit in derselben Lava verantwortlich sei.In Anbetracht der Ergebnisse von Experimenten über den Einfluß von H2O auf die Klinopyroxen-Zusammensetzung in K-reichen Laven, werden die beobachtete Zonierung und die daraus folgende Dominanz von Salit-Kernen in bestimmten Lavatypen der Wirkung von volatilen Bestandteilen, besonders Wasser, zugeschrieben. änderungen des H2O-Drucks können für Phenokristall-Korrosion und Verdrängung der salitischen Klinopyroxene durch Olivin, Phlogopit und Titanomagnetit verantwortlich sein.Die entscheidende Rolle des Wassers in der Entwicklung des Magmas stimmt mit dem hohen Fluor-Gehalt der Produkte, der die H2O-Löslichkeit in Magmen erhöht, mit der Häufigkeit des Glimmers in der Grundmasse der Gesteine und mit der explosiven Natur des Vulkanismus im Untersuchungsgebiet überein.

Zur Chemie der Klinopyroxene in den Kali-reichen Gesteinen der Albaner Berge
  相似文献   

2.
Carbon and oxygen isotopic analyses have been carried out on carbonates from lavas, ejectites and sedimentary formations in the region of the Alban Hills.The calcite occurring in the lavas, both in veins and cavities and dispersed in the groundmass shows within each flow a fairly uniform isotopic composition not different from that normally observed in sedimentary carbonates, except in the case of one particular flow, where unusually low 13C values were recorded. The latter are discussed in terms of a possible contribution of organic carbon or of isotopically light carbonates, the presence of which in the Alban Hills area had been previously recorded.The ejectites examined comprise both limestone and dolostone blocks of various degree of metamorphism and materials of uncertain origin, some of which containing carbon and oxygen of isotopic composition wholly different from that of all carbonates analysed in this work, approaching the range observed in some carbonatites. The isotopic data and the geochemical features of the latter materials are discussed in terms of thermal metamorphism of limestones and of a possible syntexis of evaporite materials.The 18O and 13C values of certain marine limestones from major Mesozoic sedimentary formations in the region are also reported.  相似文献   

3.
Summary A suite of lithics (ejecta) collected from the latest erupted pyroclastic products of the Alban Hills volcano (Central Italy) has been studied to determine their mineralogical composition and to investigate their genesis. The ejecta commonly have granular texture and consist of coarse-grained crystals often associated with a fine- to medium-grained matrix. The mineralogical composition is variable and consists of both typical igneous minerals and contact metamorphic phases. Garnet, clinopyroxene K-feldspar are almost ubiquitous, whereas leucite, wollastonite, sodalite-group minerals, phlogopite, nepheline and phillipsite are present in most of the ejecta; minor and accessory phases include cuspidine, amphibole, pyrrhotite, magnetite, apatite, uranpyrochlore, sphene, kalsilite, and melilite; anorthite, zircon and fluorine-bearing Ca, Zr silicate phases, larnite, and baryte are found sporadically. Ca, REE, Th silicophosphates occur in many samples generally disseminated along interstices and fractures of main minerals. Calcite is present as discrete crystals sometimes enclosed in other minerals, as granules in the fine-grained matrix and as late microcrystalline veins. It shows high oxygen and low carbon isotope ratios with δ18O = + 17.96 to + 27.19, and δ13C = −4.74 to −19.57. Clinopyroxene ranges from diopside to compositions strongly enriched with both Ca-Tschermak’s and esseneite components. Feldspars are generally potassic even though Ba and Sr are found in significant concentrations in some samples. K-feldspars from wollastonite-bearing ejecta are often rimmed with elongated felty crystals identified by X-ray diffraction analysis as leucite. These feldspars show a depletion in Si, and enrichment in Al and K from core to rim. Significant compositional variations are also shown by various other phases such as nepheline, apatite, Ca, REE, Th silicophosphate. The occurrence of igneous and contact metamorphic minerals, as well as the chemical variations of clinopyroxenes and feldspars in the investigated ejecta reveal complex genetic processes related to the interaction between potassic magma and wall rocks. The Ca-rich composition of most phases points to a carbonate nature for the wall rocks. Textural evidence suggests that coarse-grained rocks formed at the margin of the magma chamber were invaded by a late, volatile rich potassic liquid which crystallized as a fine-grained matrix and produced disaggregation and reaction of early formed minerals. Fluid phases percolating through the rocks generated infiltration metasomatism and deposited some uncommon phases rich in Ca, REE, Th, U, which are found along cracks and at the margins of early crystallized minerals. Overall, the all spectrum of the minerals found in this study are also typical of carbonatitic rocks. Their presence in the Alban Hills ejecta demonstrates that their genesis can be related to interaction between ultrapotassic melts and carbonate wall rocks, in addition to precipitation from carbonatitic melts. Received February 20, 2001; revised version accepted September 23, 2001  相似文献   

4.
The Alban Hills ultrapotassic volcanic district is one of the main districts emplaced during Quaternary time along the Tyrrhenian margin of Italy. Alban Hills lava flows and scoria clasts are made up essentially of clinopyroxenes and leucites and their chemical composition is mostly K-foiditic. Differentiated products (MgO < 3 wt.%) are characterised by low SiO2 concentration (< 50 wt.%) and geochemical features indicate that this unique differentiation trend is driven by crystal fractionation plus carbonate crust interaction. Notably, the Alban Hills Volcanic District was emplaced into thick limestone units. With the aim of constraining the magmatic differentiation, we performed experiments on the Alban Hills parental composition (plagioclase-free phono-tephrite) under anhydrous, hydrous, and hydrous-carbonated conditions. Experiments were carried out at 1 atm, 0.5 GPa and 1 GPa, temperatures ranging from 1050 to 1300 °C, and H2O and CaCO3 in the starting material up to 2 and 7 wt.%, respectively. The experiments performed at 0.5 GPa are the most representative of the Alban Hills plumbing system. Clinopyroxene and leucite are the main phases occurring under all the investigated conditions and the liquidus phases. Nevertheless, our experimental results demonstrate that the occurrence of CaCO3 in the starting material strongly affects phase relations. Experiments performed under hydrous conditions crystallize magnetite and phlogopite at relatively high temperature. This early crystallization drives the glass composition towards a silica enrichment, resulting in a differentiation trend moving from phono-tephritic (Alban Hills parental composition) to phonolitic compositions. This is in contrast with micro-textural evidence showing late crystallization of magnetite and phlogopite in the natural products and with the composition of the juvenile products. On the contrary, in the CaCO3-bearing experiments (i.e., simulating magma–carbonate interaction) the magnetite and phlogopite stability fields are strongly reduced. As a consequence, the melt differentiation is mainly controlled by the cotectic crystallization of clinopyroxene and leucite, resulting in a differentiation trend moving towards K-foiditic compositions. These experimental results are in agreement with micro-textural features and chemical compositions of Alban Hills natural products and with the magmatic differentiation model inferred by geochemical data. Magma–carbonate interaction is not a rare process and its occurrence has been demonstrated for different plumbing systems. However, the uniqueness of the Alban Hills liquid line of descent suggests that the efficacy of the carbonate contamination process is controlled by different factors, the dynamics of the plumbing system being one of the most important.  相似文献   

5.
We investigated chemical and isotopic compositions of clinopyroxene crystals from well age-constrained juvenile scoria clasts, lava flows, and hypoabyssal magmatic ejecta representative of the whole eruptive history of the Alban Hills Volcanic District. The Alban Hills is a Quaternary ultra-potassic district that was emplaced into thick limestone units along the Tyrrhenian margin of Italy. Alban Hills volcanic products, even the most differentiated, are characterised by low SiO2 content. We suggest that the low silica activity in evolving magmas can be ultimately due to a decarbonation process occurring at the magma/limestone interface. According to the liquid line of descent we propose, the differentiation process is driven by crystallisation of clinopyroxene + leucite ± apatite ± magnetite coupled with assimilation of a small amount of calcite and/or with interaction with crustal CO2. By combining age, chemical data, strontium and oxygen isotopic compositions, and REE content of clinopyroxene, we give insights into the evolution of primitive ultrapotassic magmas of the Alban Hills Volcanic District over an elapsed period of about 600 kyr. Geochemical features of clinopyroxene crystals, consistent with data coming from other Italian ultrapotassic magmas, indicate that Alban Hills primary magmas were generated from a metasomatized lithospheric mantle source. In addition, our study shows that the 87Sr / 86Sr and LREE/HREE of Alban Hills magmas continuously diminished during the 600–35 ka time interval of the Alban Hills eruptive history, possibly reflecting the progressive depletion of the metasomatized mantle source of magmas.  相似文献   

6.
Granular xenoliths (ejecta) from pyroclastic deposits emplaced during the latest stages of activity of the Alban Hills volcano range from ultramafic to salic. Ultramafic types consist of various proportions of olivine, spinel, clinopyroxene and phlogopite. They show low SiO2, alkalies and incompatible element abundances and very high MgO. However, Cr, Co and Sc are anomalously low, at a few ppm level. Olivine is highly magnesian (up to Fo%=96) and has rather high CaO (1% Ca) and very low Ni (around a few tens ppm) contents. These characteristics indicate a genesis of ultramafic ejecta by thermal metamorphism of a siliceous dolomitic limestone, probably with input of chemical components from potassic magma. The other xenoliths have textures and compositional characteristics which indicate that they represent either intrusive equivalents of lavas or cumulates crystallized from variably evolved ultrapotassic magmas. One sample of the former group has major element composition resembling ultrapotassic rocks with kamafugitic affinity. Some cumulitic rocks have exceedingly high abundances of Th (81–84 ppm) and light rare-earth elements (LREE) (La+Ce=421–498 ppm) and extreme REE fractionation (La/Yb=288–1393), not justified by their modal mineralogy which is dominated by sanidine, leucite and nepheline. Finegrained phases are dispersed through the fractures and within the interstices of the main minerals. Semiquantitative EDS analyses show that Th and LREE occur at concentration levels of several tens of percent in these phases, indicating that their presence is responsible for the high concentration of incompatible trace elements in the whole rocks. The interstitial position of these phases and their association with fluorite support a secondary origin by deposition from fluorine-rich fluids separated from a highly evolved potassic liquid. The Nd isotopic ratios of the cjecta range from 0.51182 to 0.51217. 87Sr/86Sr ratios range from 0.70900 to 0.71036. With the exception of one sample, these values are lower than those of the outcropping lavas, which cluster around 0.7105±3. This indicates either the occurrence of several isotopically distinct potassic magmas or a variable interaction between magmas and wall rocks. However, this latter hypothesis requires selective assimilation of host rocks in order to explain isotopic and geochemical characteristics of lavas and xenoliths. The new data indicate that the evolutionary processes in the potassic magmas of the Alban Hills were much more complex than envisaged by previous studies. Interaction of magmas with wall rocks may be an important process during magmatic evolution. Element migration by gaseous transfer, often invoked but rarely constrained by sound data, is shown to have occurred during the latest stages of magmatic evolution. Such a process was able to produce selective enrichment of Th, U, LREE and, to a minor degree, Ta and Hf in the wall rocks of potassic magma chamber. Finally, the occurrence of xenoliths with kamafugitic composition points to the existence of this type of ultrapotassic magma at the Alban Hills.  相似文献   

7.
CaSO4 has been investigated at room temperature over the pressure range of 0 to 160 kbar. A reversible, sluggish transition that occurs at about 20 kbar with a volume change of about 4% has been confirmed. The x-ray powder data collected at pressure can be indexed on the monoclinic monazite structure cell (P21/n) which is considered to be the most likely model structure for the new HP CaSO4 phase. The transition is largely distortional and involves rotation and displacement, but essentially preserves the chains of edge shared CaO8(9) and SO4 polyhedra found in the orthorhombic anhydrite (Bbmm) structure.  相似文献   

8.
In the Alban Hills area, strong areally diffuse and localised spot degassing processes occur (Tivoli, Cava dei Selci, Solforata, Tor Caldara). The gas comprises a large proportion of CO2, with minor CH4, H2S and Rn. These advective features are generated by fluid leakage from buried reservoirs hosted in the structural highs of the Mesozoic carbonate basement. Gas migration towards the surface is controlled by fault and fracture systems bordering the structural highs of the carbonate formations (e.g. Ciampino high). His release is triggered when the total pressure of the fluid phase exceeds the hydrostatic pressure, thus forming a free gas phase. Furthermore, both the sudden and catastrophic, and slow and continuous gas release at surface, of naturally occurring toxic species (CO2, H2S and Rn) poses a serious health risk to people living in this geologically active area.This paper presents data obtained from soil gas and gas flux surveys, as well as gas isotopes analyses, which suggest the presence of a deep origin gas flux enriched in carbon dioxide and minor species (CH4 and H2S), as well as a channelled migration of geogas mixtures having a Rn component which is not produced in situ.In regards to the health risk to local inhabitants, it was found that some anomalous areas had been zoned as parkland while others had been heavily developed for residential purposes. For example, many new houses were found to have been built on ground which has soil gas CO2 concentrations of over 70% and a CO2 flux of about 0.7 kg m−2 day−1, as well as radon values of more than 250 kBq/m3. In addition, an indoor radon survey has been conducted in selected houses in the town of Cava dei Selci to search for a possible correlation between the local geology and the radon concentration in indoor air. Preliminary results indicate high indoor values at ground floor levels (up to 1000 Bq/m3) and very high values in the cellars (up to 250.000 Bq/m3). It is recommended that land-use planners incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk (i.e. volcanic or structurally active areas).  相似文献   

9.
Magma-carbonate rock interaction is investigated through a geochemical and Sr-Nd-O isotope study of granular lithic clasts (ejecta) from the Alban Hills ultrapotassic volcano, Central Italy. Some samples (Group-1) basically represent intrusive equivalents of Alban Hills magmas. A few samples (Group-2) are ultramafic, have high MgO (∼30 to 40 wt%) and δ18O‰, and originated by accumulation of mafic phases that crystallised from ultrapotassic melts during assimilation of dolomitic rocks. Group-3 ejecta consist of dominant K-feldspar, and show major element compositions similar to phonolites, which, however, are absent among the Alban Hills volcanics. Finally, another group (Group-4) contains corroded K-feldspars, surrounded by a microgranular to porphyritic matrix, made of igneous minerals (K-feldspar, foids, clinopyroxene, phlogopite) plus wollastonite, garnet, and some cuspidine. Group-4 ejecta are depleted in SiO2 and enriched in CaO with respect to Group-3.The analysed ejecta have similar 143Nd/144Nd (0.51204-0.51217) as the Alban Hills lavas, whereas 87Sr/86Sr (0.70900-0.71067) is similar to lower. Whole rocks δ18O‰ ranges from +7.0 to +13.2, reaching maximum values in ultramafic samples. A positive correlation with CaO is observed in single rock groups. Large Ion Lithophile Element (LILE) abundances and REE fractionation are generally high, and extreme values of Th, U and LREE are found in some Group-3 and Group-4 rocks.Mineralogical, petrological and geochemical data reveal extensive interaction between magma and carbonate wall rocks, involving both dolostones and limestones. These processes had dramatic effects on magma compositions, especially on phonolites, which were transformed to foidites. Evidence of such a process is found in Group-4 samples, in which K-feldspar is observed to react with a matrix that represents strongly undersaturated melts formed by interaction between silicate magma and carbonates. Trace element data also testify to a very important role for F-CO2-H2O-S fluids during magma-wall rock interaction. Fluid transfer was responsible for extreme enrichments in Th, U, and LREE especially observed in Group-3 and Group-4 rocks. Implications of these processes for potassic magma evolution in Central Italy are discussed.  相似文献   

10.
Five species belonging to five genera and an unidentified rhynchonellid have been recognised in a Late Eocene (Priabonian) brachiopod assemblage from Castelnuovo in the Euganean Hills, north-eastern Italy. One genus and two species are new, i. e. Venetocrania euganea gen. et sp. nov. and “Terebratulaitalica sp. nov. Orthothyris pectinoides (von Koenen 1894) is recorded for the first time from Italy. The other species are Terebratulina sp. cf. T. tenuistriata (Leymerie 1846) and Lacazella mediterranea (Risso 1826), both already known from the Italian Eocene.  相似文献   

11.
Trace element data are reported in 21 lava samples from the Alban Hills, one of the most important volcanic complexes of the Roman comagmatic region. The samples consist mostly of tephritic leucitites with minor phonolitic tephrites and tephritic phonolites emplaced during two distinct phases of activity, separated by a caldera collapse. The ferromagnesian element contents are variable (Ni=93-26 ppm; Co=37-20 ppm; Cr=359-5 ppm; Sc=35-6 ppm) and tend to have higher values in the post-caldera rocks. Rb, Cs, Th, Sr, and LREE are extremely enriched in all the samples analyzed, with the pre-caldera rocks displaying a lower content of Rb and Cs and a higher abundance of Th, light REE and La/Yb ratio. Ta and Hf are not so high and are more enriched in the pre-caldera samples. Sr displays comparable values in the two groups of rocks. The trace element variation indicates that the rocks from the Alban Hills represent two distinct series of liquids formed by crystal/liquid fractionation processes starting from two parental magmas. The genesis of the primary melts is hypothesized as due to a low degree of partial melting of a mantle peridotite enriched in incompatible elements. All of the studied samples have distribution patterns of incompatible elements normalized against a hypothetical primordial mantle composition, which are similar to that displayed by the aeolian calc-alkaline and leucite-tephritic products and distinctively different from those of typical K-rich volcanics from an intraplate rift environment. This strongly supports the hypothesis that there is a close genetic connection between Roman magmatism and subductionrelated processes.  相似文献   

12.
Groundwater surveys were performed by detailed(around 300 sites) grid-analysis of water temperature, pH, redox potential, electrical conductivity, 222Rn, alkalinity and by calculating the pCO2, throughout the Ciampino and Marino towns in the Alban Hills quiescent volcano (Central Italy). Following several episodes of dangerous CO2 exhalation from soils during the last 20 years and earlier ashistorically recorded, the work aimed at assessing the Natural Gas Hazard (NGH) including the indoor-Rn hazard. The NGH was defined as the probability of an area to become a site of poisonous peri-volcanic gas exhalations from soils to the lower atmosphere (comprising buildings). CO2 was found to be a ``carrier' for the other poisonous minor and in trace components (HsS, CH4, 222Rn, etc.). This assessment was performed by extrapolating in the aquifer CO2 and 222Rn conditions, and discriminating sectors where future CO2 flux in soils as well as indoor-Rn measurements have to be noted. A preliminary indoor-Rn survey was performed at about 200 sites. The highest values were found in the highest pCO2 and high 222Rn values in groundwater. This indicates convection and enhanced permeability in certain sectors of the main aquifer, i.e., along the bordering faults and inside the gas-trap of the Ciampino Horst., where ``continuous gas-phase micro-macro seepage mechanism' is invoked to explain the high peri-volcanic gases flux.  相似文献   

13.
Gordon G. Goles 《Lithos》1975,8(1):47-58
Five Ne-normative basalts are unusually rich in Cr, to a lesser degree in Co, and have very high La/Lu ratios and high contents of several excluded trace elements resembling kimberlites in these and other aspects. They seem to represent mantle-derived magmas, only slightly modified by shallow level crystal/liquid fractionation. Cr was apparently excluded from the crystalline phases in equilibrium with these magmas in the upper mantle.The Chyulu rocks differ in several respects from other Gregory Rift basalts, but closely resemble those from Jan Mayen Island near the Mid-Atlantic ridge. The generation of these unusual basalts is therefore not related simply to mantle composition or tectonic setting, but may reflect unusually high-T (1450°C), low-P (15–29 kbars) environments in the zones of last effective equilibration of these magmas with mantle rocks.  相似文献   

14.
In order to provide a better chronological constraint on a British Middle Pleistocene interglacial, a large stalagmite boss from the Mendip Hills was selected for palaeoclimate data using pollen analysis. Dating analyses by thermal ionisation mass spectrometry (TIMS) of uranium–thorium ratios and by magnetostratigraphy constrain the age of the sample to 450–780 ka. The isotopic consistency of the TIMS analyses, plus the presence of luminescence laminations, suggest that the sample has been preserved under closed-system conditions. Pollen assemblages have been recovered from the speleothems, despite the fact that the pH of calcite deposition is usually greater than 7. Furthermore the evidence presented here indicates that the pollen was probably transported by the speleothem feedwater, rather than entering the cave aerially. The pollen record contained within the stalagmite is interpreted as early–mid-interglacial but does not have clear Cromerian affinity. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Khasi Hills area of Meghalaya, one of the highest rainfall zones of the world has been explored to understand the spatial and temporal extent of Quaternary sediments. In general such deposits are restricted to shallow depths in most of the sites except in one site where it is 600 cm thick. AMS C-14 dates of these deposits suggest that sediments deposited are mostly of Holocene or in rare cases belong to later part of Pleistocene. Early Quaternary deposit is either missing or yet to be explored from this region. Natural hazards combined with human activity effecting degradation of vegetation and sediment cover are probably the main cause for poor Quaternary exposure at the region.  相似文献   

16.
东南极拉斯曼丘陵泥质麻粒岩变质作用演化   总被引:5,自引:0,他引:5  
普里兹湾拉斯曼丘陵代表了东南极一条重要的早古生代的~530Ma泛非期(Pan-African)高级构造活动带。然而,该区早期的晚元古代的~1000Ma格林维尔期(Grenvellian)高级变质作用的演化历史至今仍有争论。该区呈透镜状产出的泥质麻粒岩峰期矿物组合(M1)为石榴石+堇青石+斜方辉石+钾长石+石英,峰期石榴石变斑晶发育堇青石或堇青石+斜方辉石反应边(M2)。利用Thermocalc程序在KFMASH模式体系对该泥质麻粒岩进行的定量模拟表明,其峰期矿物组合是由反应石榴石+黑云母+石英=堇青石+斜方辉石+钾长石+熔体形成的。利用Themocalc平均P-T计算方法获得峰期M1变质P-T条件为~0.9GPa和~900℃,而叠加的M2组合反映了一个减压冷却的过程,其变质P-T条件为~0.7GPa和800~850℃。结合已有的年代学数据,认为该区泥质麻粒岩的峰期M1矿物组合反映晚元古代(~1000Ma)格林维尔期挤压D1构造事件,而叠加的M2矿物组合与M3蠕虫状结构则形成于早古生代泛非期(~530Ma)D2~D3高级扭压剪切构造期间。该扭压事件导致了面状高低应变带的发育以及进步花岗岩和伟晶岩的侵入。  相似文献   

17.
Water quality impacts from mining in the Black Hills,South Dakota,USA   总被引:1,自引:0,他引:1  
The focus of this research was to determine if abandoned mines constitute a major environmental hazard in the Black Hills. Many abandoned gold mines in the Black Hills contribute acid and heavy metals to streams. In some areas of sulfide mineralization local impacts are severe, but in most areas the impacts are small because most ore deposits consist of small quartz veins with few sulfides. Pegmatite mines appear to have negligible effects on water due to the insoluble nature of pegmatite minerals. Uranium mines in the southern Black Hills contribute some radioactivity to surface water, but the impact is limited because of the dry climate and lack of runoff in that area.  相似文献   

18.
东南极拉斯曼丘陵地区麻粒岩相岩石中出露一套罕见的含硅硼镁铝矿-柱晶石-电气石矿物组合的富硼岩系.由于高级变质作用已使原岩的性质难以确定,变质原岩及其形成环境的恢复变得十分困难,而硼同位素组成则可以作为判定硼来源的有效示踪剂和指相标志.报道了东南极拉斯曼丘陵硅硼镁铝矿-柱晶石-电气石富硼岩系的硼同位素组成资料,其δ11B值变化范围为-12.0‰~-34.6‰,硼同位素的低比值和其他地质证据表明,其原岩为非海相蒸发硼酸盐岩.  相似文献   

19.
Sapphirine-cordierite-quartz and spinel-cordierite-quartz form relic assemblages of probable Archaean age in Fe-rich aluminous metapelites from Labwor Hills, Uganda, and reflect an unusually high temperature metamorphism (1,000° C) at pressures in the vicinity of 7–9 kbars and a(O2) near the magnetite-hematite buffer. Subsequent reaction textures include the replacement of spinel and cordierite by sillimanite and hypersthene and formation of sapphirine-hypersthene-K-feldspar-quartz symplectites which are interpreted as pseudomorphs after osumilite. A petrogenetic grid appropriate to these assemblages suggests these reaction textures may be due to cooling at constant or increasing pressure and constant a(O2), or decreasing a(O2) at constant temperature and pressure. The former interpretation is supported by the coexistence of ilmenohematite and magnetite during the development of the reaction textures, and by the comparatively low Al2O3-contents of secondary hypersthene. This pressure-temperature path implies that: (1) metamorphism occurred at deep levels within normal thickness crust, probably less than 40–45 km thick, due to an extreme thermal perturbation induced either by emplacement of mantle-derived magmas or by thinning of the subcontinental lithosphere in an extensional tectonic regime, (2) the excavation and surface exposure of the granulites is due to a subsequent, postgranulite facies metamorphism, crustal thickening most probably involving their incorporation into an allochthonous upper crustal thrust sheet during the formation of the Mozambique foldbelt.  相似文献   

20.
Examples of the three volcanic rock types, wyomingite, orendite and madupite from the Leucite Hills have been examined with the electron microprobe. The results show that leucite is non-stoichiometric as predicted byCross (1897), having an excess of potassium and silicon, and that the only feldspar found, a sanidine, contains up to 18 percent of the iron-feldspar molecule. The co-existing phlogopite, diopside and olivine together with the groundmass amphibole are all highly magnesian. Of the varied accessory minerals, priderite (K2Ti8O16) and wadeite (K4Zr2Si6O18) have been identified and analyzed together with ubiquitous apatite and perovskite, both of which contain rare earths in abundance. Comparative mineralogical data has been obtained on a few representative specimens from West Australia and on the jumillite from Spain.The new rock analyses together with the existing data from the Leucite Hills show the rare but characteristic molecular excess of potassium over aluminium; this excess is considered to account for the ahsence of the iron-titanium oxides in the orendites and wyomingites, and of course for the unusual composition and species of the minerals. Exploratory melting experiments show that these potassic lavas have a comparable melting range to magnesian basalts, and a crustal origin is thereby considered precluded. There is no evidence that sialic contamination contributed notably to the composition of the oversaturated orendites and wyomingites, and their relationship by any process of crystal fractionation to the undersaturated madupite is obscure. The generation of madupite could be achieved by crystal fractionation at high pressure of a liquid derived by partial fusion of mantle material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号