首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selected by-products which are produced upon chlorination or ozonization of seawater were examined for their effect on eastern oyster (Crassostrea virginica) larvae. The compounds, bromate, bromoform, and chloroform, were studied at 0.05, 0.1, 1.0, and 10.0 mg/l. Repeated bioassays indicated that even at these low levels, all three substances produced some larval mortality. This preliminary study suggests that oxidation by-products formed during chlorination or ozonization of power plant cooling waters may have adverse effects upon the growth of marine invertebrates, such as C. virginica, during their delicate larval stages.  相似文献   

2.
This study examined the interactive effects of copper and elevated temperature and subsequent depuration on Platygyra acuta coral larvae. Larval mortality and motility were significantly affected by copper alone (70% and 100% inhibition respectively). Their respective lethal/inhibitory concentration (LC50/IC50) were 10–130% and 86–193% higher than those reported for other larvae. Temperature (ambient, 27 °C and elevated, 30 °C) alone and the combination of temperature and copper did not significantly affect both endpoints. This study provides the first quantitative data on depuration effect on resumption of larval motility after copper exposure, although no sign of larval recovery was observed. These findings suggest that the effects of copper pollution outweigh the thermal tolerance of coral larvae. High LC50 and IC50 recorded may be unique for corals from marginal reefs like Hong Kong which have already been exposed to high levels of copper pollution.  相似文献   

3.
There is a recognized dearth of standard environmental quality data in the wider Caribbean area, especially on coral atolls/small island states. Extensive surveys of sediment contamination (n = 109 samples) in Bermuda revealed a wide spectrum of environmental quality. Zinc and especially copper levels were elevated at some locations, associated with boating (antifouling paints and boatyard discharges). Mercury contamination was surprisingly prevalent, with total levels as high as 12 mg kg−1 DW, although methyl mercury levels were quite low. PAH, PCB and PCDD/PCDF contamination was detected a several hotspots associated with road run-off, a marine landfill, and a former US Naval annexe. NOAA sediment quality guidelines were exceeded at several locations, indicating biological effects are possible, or at some locations probable. Overall, and despite lack of industrialization, anthropogenic chemicals in sediments of the atoll presented a risk to benthic biodiversity at a number of hotspots suggesting a need for sediment management strategies.  相似文献   

4.
Population growth in urban areas is putting pressure on sewage treatment plants. The improper treatment of sewage entering the aquatic ecosystems causes deterioration of the water quality of the receiving water body. The effect of sewage effluent on the Sand River was assessed. Eight sampling sites were selected, site 1 and 2 were upstream of the sewage treatment plant along the urbanised area of Polokwane, whilst sites 3, 4, 5, 6, 7 and 8 were downstream. The physico-chemical parameters and coliform counts in the water samples were determined. The suitability of the water for irrigation was also determined. Hierarchical average linkage cluster analysis produced two clusters, grouping two sites above the sewage treatment works and six sites downstream of the sewage effluent discharge point. Principal component analysis (PCA) identified total nitrogen, total phosphorus, conductivity and salinity as the major factors contributing to the variability of the Sand River water quality. These factors are strongly associated with the downstream sites. Canonial correspondence analysis (CCA) indicated the macroinvertebrates, Chironomidae, Belastomatidae, Chaoborus and Hirudinea being strongly associated with nitrogen, phosphorus, conductivity and temperature. Escherichia coli levels in the Polokwane wastewater treatment works maturation ponds, could potentially lead to contamination of the Polokwane aquifer. The Sodium Adsorption Ratio was between 1.5 and 3.0 and residual sodium carbonate was below 1.24 Meq/l, indicating that the Sand River water is still suitable for irrigation. The total phosphorus concentrations fluctuated across the different site. Total nitrogen concentrations showed a gradual decrease downstream from the point of discharge. This shows that the river still has a good self-purification capacity.  相似文献   

5.
Analyses for 99Tc in some marine biological samples taken near the outlet of the low level radioactive effluent pipeline of the nuclear reprocessing plant of La Hague, France, gave positive results. From 500 to 3500 pCi kg?1 wet weight of 99Tc were observed in brown algae; Fucus sp. appeared to be a good indicator of this long-lived radionuclide in a marine environment.  相似文献   

6.
The present work reports biological neutralization of chlor-alkali industrial effluent by an alkaliphilic bacterium, isolated from the Gujarat coast, which was identified as Enterococcus faecium strain R-5 on the basis of morphological, biochemical and partial 16S rRNA gene sequencing. The isolate was capable of bringing down the pH of waste water from 12.0 to 7.0 within 3 h in the presence of carbon and nitrogen sources, with simultaneous reduction in total dissolved solutes (TDS) up to 19-22%. This bacterium produced carboxylic acid, as revealed by FT-IR analysis, which facilitated neutralization of alkaline effluent. The presence of unconventional raw materials viz. Madhuca indica flowers or sugar cane bagasse as carbon and nitrogen sources could effectively neutralize alkaline effluent and thus making the bioremediation process economically viable. The time required for neutralization varied with size of inoculum. To the best of our knowledge, this is the first report on biological neutralization of a chlor-alkali industrial effluent.  相似文献   

7.
《Marine pollution bulletin》2009,58(6-12):637-644
Because of complexity and diversity of toxicants in effluent, chemical analysis alone gives very limited information on identifying toxic chemicals to test organisms. Toxicity identification evaluation (TIE) techniques have been widely used to identify toxicants in various samples including industrial wastewater as well as natural waters. In response to new regulation for effluent discharge in Korea, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels in industrial effluents. This work was a preliminary study examining toxicity levels in effluent from one metal plating factory using Daphnia magna (48 h immobility) and identifying toxicity-causing substances. Toxicity tests showed variability on different sampling occasions and the results of TIE methods indicated that both organic compounds and metals contributed to the observed toxicity in metal plating effluent. Further studies are necessary to help reduce effluent toxicity especially from direct dischargers, who will have to comply with the new regulation.  相似文献   

8.
Study of the Biological Degradation of Polycyclic Aromatic Hydrocarbons in a Laboratory-scale Plant A one-stage laboratory-scale wastewater treatment plant composed of a bubble column reactor with sedimentor and sludge recycle is fed with an oil/water emulsion from a contaminated site. The oil phase is highly contaminated with polycyclic aromatic hydrocarbons (PAH). The samples are taken regularly at defined points of the treatment plant (influent, reactor, return sludge, effluent). The analysis of PAH is performed by HPLC. We can show that all analysed PAH including the poorly degradable carcinogenic substances such as benzo[a]pyrene are biologically transformed. Additional measurements of the toxic and mutagenic potential of the wastewater show that in the laboratory-scale plant full removal of the carcinogenic potential is not achieved. This is due to the fact that during the biological transformation of higher condensated PAH mutagenic dead-end metabolites are produced.  相似文献   

9.
《Marine pollution bulletin》2012,64(5-12):370-375
In Korea, the new permission criteria for industrial effluents based on Daphnia magna acute toxicity tests will be gradually implemented starting from 2011. Thus, in this study, toxicity assessment and identification using a marine species (Tigriopus japonicus) and the freshwater species (D. magna) was comparatively investigated. Effluent from an acid mine drainage treatment plant showed acute toxicity toward both organisms due to low pH, which was removed by neutralization of the effluent. Additionally, evaluation of the effluent of an electronics company revealed that Cu was attributable to the observed toxicity, and the effluent was more toxic toward T. japonicus than D. magna. Moreover, effluents from a metal plating factory were acutely toxic toward D. magna (6.50 TU), while they were not toxic against T. japonicus. Toxicity identification revealed that the high level of Cl (12,841 mg L−1) was the cause of toxicity. Thus, the effluents had no effect on the marine species, T. japonicus. These findings suggest that a marine species rather than a freshwater species is more desirable for toxicity assessment of industrial effluent discharged into the saltwater, and thus should be considered in the legislation of toxicity-based discharge limits in Korea.  相似文献   

10.
Sediments and animals collected from near the discharge zone of the Los Angeles County wastewater treatment plant were analysed for 27 selected organic compounds that had been identified in the effluent. It was found that the sediment and tissue concentrations of these organic compounds were positively correlated with each other and with the n-octanol/water partition coefficient but that these were negatively correlated with the effluent concentration. It was concluded that n-octanol/water partition coefficients should be used to predict which organics have the potential to bioaccumulate and therefore cause biological effects.  相似文献   

11.
Huntington Beach, California, one of the most popular surfing spots in the world, is plagued by sporadic, elevated levels of fecal bacteria. To assist with pollution source identification, we analyzed antibiotic resistance patterns (ARPs) of enterococci from four known sources (bird feces, urban runoff, coastal marsh sediment and sewage effluent from local sanitation district) and one unknown source (seawater) using seven antibiotics at four concentrations each. Of 2491 enterococci tested, all were resistant to at least one antibiotic at some level. Discriminant analysis indicated that the average correct classification rates for bird feces and urban runoff sources were above 80%. Sewage effluent contained mixed fecal sources. Sixty-four percent of the sewage isolates classified with the sewage category, while the other 35% of isolates were assigned evenly across the other three categories. When enterococci isolated from the seawater were classified using the known ARP database, it was evident that bird feces were the source of surf zone contamination on some days while the coastal salt marsh and sewage plume may have impacted the surf zone water quality to various degrees during other times.  相似文献   

12.
Wastewater treatment plants are major point-sources of nutrients to streams globally, but the impact on receiving streams is not always clear. Previous research has shown mixed responses in receiving streams, with some showing no net retention through in-stream processing for large distances below plants and some showing high rates of processing and retention. This study focuses on Sandy Run, a small, suburban stream in Montgomery County, PA, that receives effluent from two plants, where effluent makes up an estimated 50% of outlet discharge at baseflow. Two sites were monitored in late summer baseflow using high-temporal loggers to evaluate nitrate and phosphate retention with distance below the plants. Effluent quantity was monitored immediately below the effluent outfalls using specific conductivity as a conservative signal of solute fluctuations throughout the day. A site 1 km downstream showed diel nitrate changes, but despite moderate gross primary productivity and ecosystem respiration rates, there was little net retention of nutrients and the diel nitrate signal can be attributed to advection and dispersion of variable upstream effluent. A site 5.4 km below the plant showed a diel nitrate signal as well, but baseflow daily hysteresis plots of nitrate and specific conductivity showed the effluent and nitrate peaks did not coincide. Instead, the effluent input signal was seen overnight, but there was in-stream removal and release processes during the day. Over the distance to this site, the stream was metabolizing some of the high nutrient loads, although gross primary productivity and ecosystem respiration rates were lower. It is important to understand subdaily changes in nutrient processing to fully quantify the impacts of effluent on small streams at different scales. Furthermore, looking at the diel signal without considering conservative transport would overestimate in-stream processing.  相似文献   

13.
Twelve trace elements (antimony, arsenic, cadmium, chromium, cobalt, copper, iron, managenese, mercury, scandium, selenium and zinc) were determined by neutron activation analysis in a planktonic copepod (Acartia clausi) from Elefsis Bay of the Upper Saronikos Gulf, Greece. During the first cruise (January 1974) higher levels of most of these trace elements were found in this copepod collected from a polluted area of the bay. This trend however was not observed during the second cruise (February 1974) possibly due to the termination of the active vertical convection. Lower levels of cobalt, similar levels of iron and slightly increased levels of chromium were found in Elefsis Bay Acartia clausi from those reportedin Acartia clausi from the Bay of Roquebrune. Slightly increased concentrations of antimony and zinc as well as lower concentrations of arsenic and cadmium were found in Acartia clausi than those reported in other Copepoda. No significant differences were found for copper, manganese and mercury. More data are needed to confirm if higher levels of antimony, chromium and zinc found in Acartia clausi are due to the pollution of the bay.  相似文献   

14.
Dredging related metal bioaccumulation in oysters   总被引:1,自引:0,他引:1  
Bivalves are regularly used as biomonitors of contaminants in coastal and estuarine waters. We used oysters to assess short term changes in metal availability caused by the resuspension of contaminated sediments. Sydney Rock Oysters, Saccostrea glomerata, were deployed at multiple sites in Port Kembla Harbour and two reference estuaries for 11 weeks before dredging and for two equivalent periods during dredging. Saccostrea experienced large increases in accumulation of zinc, copper and tin during dredging in the Port relative to oysters deployed in reference estuaries. Lead and tin were found to be permanently elevated within Port Kembla. We present a clear and un-confounded demonstration of the potential for dredging activities to cause large scale increases in water column contamination. Our results also demonstrate the usefulness of external reference locations in overcoming temporal confounding in bioaccumulation studies.  相似文献   

15.
Ecosystem response to antibiotics entering the aquatic environment   总被引:18,自引:0,他引:18  
Awareness of antibiotics in wastewaters and aquatic ecosystems is growing as investigations into alternate pollutants increase and analytical techniques for detecting these chemicals improve. The presence of three antibiotics (ciprofloxacin, norfloxacin and cephalexin) was evaluated in both sewage effluent and environmental waters downstream from a sewage discharge. Bacteria cultured from the sewage bioreactor and receiving waters were tested for resistance against six antibiotics (ciprofloxacin, tetracycline, ampicillin, trimethoprim, erythromycin and trimethoprim/sulphamethoxazole) and effects of short term exposure (24 h) to antibiotics on bacterial denitrification rates were examined. Antibiotics were detected entering the sewage treatment plant with varying levels of removal during the treatment process. Antibiotics were also detected in effluent entering receiving waters and detectable 500 m from the source. Among the bacteria cultured from the sewage bioreactor, resistance was displayed against all six antibiotics tested and bacteria cultured from receiving waters were resistant against two of the antibiotics tested. Rates of denitrification were observed to decrease in response to some antibiotics and not to others, though this was only observed at concentrations exceeding those likely to be found in the environment. Findings from this preliminary research have indicated that antibiotics are entering our aquatic systems and pose a potential threat to ecosystem function and potentially human health.  相似文献   

16.
The current study was designed to validate the biomarkers of sewage pollution in Mozambique Tilapia (Tilapia mossambica, Peters) reared in sewage treatment plant (STP) effluent in Ras Al Khaimah, United Arab Emerates, before and following depuration/detoxification. Cellular biomarkers, cholinesterase activity using acetylcholine as a substrate (acetylcholinesterase AChE) and reduced glutathione (GSH) and hepatosomatic index (HSI) were investigated in fresh water fish, Tilapia, raised in a fish farm (Group I/Clean, as Control), treated sewage water/TSW (Group II/Sewage) and thereafter exposed to fresh water in an aquarium for 6 weeks (Group III/Depurated) for depuration. The results showed significantly lower levels of AChE activities in liver (26% p < 0.01) and muscle (30% p < 0.01) of the fish reared in the STP water (Group II/Sewage) as compared to those recorded in the fish from fish farm (Group I/Clean). The depressed AChE level was fully restored in the muscle but partially in the liver after depuration (Group III/Depurated). In contrast, GSH levels were significantly raised in both liver (1.3-fold p < 0.01) and muscle (4-fold) of Group II fish as compared to Group I (control) fish raised in fish farm and following depuration in fresh water (Group III/Depurated) elevated GSH level in liver restored to control values, while remained unchanged in muscle. The average hepatosomatic index (HSI = weight of liver × 100/total fish weight), an indicator of hepatomegaly, in the Group II fish reared in TSW was also significantly higher than that in the reference Group I fish, but decreased to control level in Group III fish following depuration. This study suggests the importance of cellular biomarkers, AChE, GSH and hepatosomatic index in monitoring the impact of sewage water pollution on fish caused by a complex mixture of chemico-biological contaminants and its mitigation following depuration, an effective mean of fish detoxification.  相似文献   

17.
In 2002, the Florida Department of Environmental Protection began discharging phosphate-processing effluent into Bishop Harbor, an estuary within Tampa Bay. Because of concerns that the effluent would serve as a nutrient source for blooms of the toxic dinoflagellate Karenia brevis, a field monitoring program was established and laboratory bioassays were conducted. Several harmful algal bloom (HAB) species, including Prorocentrum minimum and Heterosigma akashiwo, were observed in bloom concentrations adjacent to the effluent discharge site. Blooms of diatoms were widespread throughout Bishop Harbor. K. brevis was observed with cell concentrations decreasing with increasing proximity to the effluent discharge site. Bioassays using effluent as a nutrient source for K. brevis resulted in decreased cell yields, increased growth rates, and increased time to log-phase growth. The responses of HAB species within Bishop Harbor and of K. brevis to effluent in bioassays suggested that HAB species differ in their response to phosphate-processing effluent.  相似文献   

18.
A new approach for detecting and mapping sewage impacts   总被引:12,自引:0,他引:12  
Increased nitrogen loading has been implicated in eutrophication occurrences worldwide. Much of this loading is attributable to the growing human population along the world's coastlines. A significant component of this nitrogen input is from sewage effluent, and delineation of the distribution and biological impact of sewage-derived nitrogen is becoming increasingly important. Here, we show a technique that identifies the source, extent and fate of biologically available sewage nitrogen in coastal marine ecosystems. This method is based on the uptake of sewage nitrogen by marine plants and subsequent analysis of the sewage signature (elevated delta 15N) in plant tissues. Spatial analysis is used to create maps of delta 15N and establish coefficient of variation estimates of the mapped values. We show elevated delta 15N levels in marine plants near sewage outfalls in Moreton Bay, Australia, a semi-enclosed bay receiving multiple sewage inputs. These maps of sewage nitrogen distribution are being used to direct nutrient reduction strategies in the region and will assist in monitoring the effectiveness of environmental protection measures.  相似文献   

19.
Produced water is one of the largest waste products routinely discharged into the ocean from offshore oil and gas platforms. This study analyzed bacterial communities and metals in the produced water, surrounding seawater, and sediment around the Thebaud platform. The bacterial community within the produced water was different from the seawater (SAB = 13.3), but the discharge had no detectable effect on the bacterial communities in the seawater (SAB > 97). In contrast, genomic analysis of sediments revealed that the bacterial community from 250 m was different (SAB = 70) from other locations further from the discharge, suggesting that the produced water had a detectable effect on the bacterial community in the sediment closest to the discharge. These near-field sediments contained elevated concentrations of manganese and iron that are associated with the produced water effluent. The results suggested that the discharge of produced water has influenced the bacterial community structure of sediments adjacent to the platform.  相似文献   

20.
We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号