首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ore and accessory chrome-spinels from metamorphosed dunites of the Cr-bearing Klyuchevskoi alpine-type ultramafic massif are studied. As a result of use of thermomagnetic analysis in the range of 4–900 K, magnetic resonance spectroscopy, and magnetic-force microscopy, secondary magnetic Fe3+-enriched microphases chaotically distributed in the primary nonmagnetic mineral were revealed for the first time in accessory chrome-spinels. It was established that the metamorphosed accessory chrome-spinels produce the magnetic properties of the host rocks and the primary nonmagnetic chrome-spinels forming ore bodies remains almost unaltered. This originates the contrast of magnetic properties between the ore body and host rocks and provides the geomagnetic anomaly in the ore-hosting zone.  相似文献   

2.
The rodingite belt in the Karabash massif situated 40 km north of Miass is continuously traced for 2.5 km along its central part. Rodingites bear up to 1% sulfide disseminations and gold particles with high Cu content (up to 40 wt %) throughout the belt. The central part of the rodingite belt is especially rich in gold, which was mined at the Zolotaya Gora (Gold Mountain) deposit. The Au-bearing rodingite belt is zonal and was formed during three stages. The inner zone is composed of chlorite-andradite-diopside rock of the first stage, which is crosscut by diopside veinlets of the second stage and calcite veinlets of the third stage. The intermediate zone consists of fine-grained chloritolite of the first stage and coarse-grained chlorite veinlets of the second stage. The outer zone of the metasomatic column is occupied by antigorite and chrysotile-lizardite serpentinites. No relict rocks or minerals of the replaced protolith have been established except sporadic Cr-spinel grains. Native gold was being deposited during all periods of rodingite formation. In terms of the currently adopted concept of evolution of the Ural Foldbelt, the Sm-Nd isochron age of rodingite estimated at 369.4 ± 8.8 Ma corresponds to the period of collisional compression of Silurian-Devonian oceanic and island-arc complexes and upward pushing out of a block of the melanocratic basement underlying these complexes. A proposed model of rodingite formation is based on ore mineralogy, REE geochemistry, and thermobarogeochemical and isotopic study of minerals. It is suggested that in contrast to the barren bimetasomatic rodingite replacing dikes, the studied rodingite are considered to be fissure veins accompanied by metasomatic alteration of host serpentinite. The estimation of initial isotopic composition of fluid components indicates that the ore-bearing fluid is of metamorphic origin (δDfl = ?4 to ?13‰ and δ18Ofl = 5.9 to 8.3‰). The fluid was formed as a product of dehydration of oceanic serpentinite at the base of melanocratic rocks and related gabbroids that moved out to the surface. These rocks were a source of gold and other components (Ca, Al, Ti, Cu, Ni, REE, P, etc.).  相似文献   

3.
U–Pb and Rb–Sr dating was undertaken in combination with P–T estimates to (1) constrain the time of ultrahigh-pressure (UHP) eclogite formation in the Stadlandet UHP province of Norway, (2) date later crustal melting–migmatization of the eclogite country gneisses, and (3) temporally trace post-migmatite cooling and retrogression under amphibolite facies metamorphic conditions. In contrast to earlier U–Pb studies which used accessory minerals from the gneisses, we focused on the direct dating of minerals defining the HP assemblage. For the eclogite, rutile and omphacite fractions were analyzed for U–Pb, and from an adjacent migmatite leucosome titanites and K-feldspar. For Rb–Sr dating, phengite was measured for the eclogite, and biotite for two leucosome layers of the migmatite–eclogite complex. A U–Pb age of 389±7 (2σ) Ma is obtained if the full set of 12 rutile and five omphacite analyses is regressed (MSWD: 16), and 389±2 Ma for those nine data which strictly satisfy isochron conditions (MSWD: 0.78). The 389-Ma age is interpreted to date equilibration and freezing of the eclogite paragenesis at maximum temperatures of 770 °C, reached during decompression to 1.8 GPa. Decompression from 2.8 to 1.8 GPa occurred in the partial melting domain of granitic crust, with the migmatites being dated at 375±6 Ma by titanite and K-feldspar from an eclogite-adjacent granitic leucosome. This titanite age also shows that the U–Pb chronometer in rutile is very robust to high temperatures—it remained a closed system for at least 14 million years, at temperatures in excess to 650 °C. After decompression and migmatization, exhumation is accompanied by rapid cooling to reach the 300 °C isograde by 357± 9 Ma, determined by a biotite isochron for a leucosome in a slightly shallower structural level. In considering that the time of maximum pressure is bracketed by early zircon crystallization during subduction and later omphacite–rutile equilibration in the eclogites, an exhumation rate of 5 mm/year is deduced for initial exhumation, occurring between 394 and 389 Ma. For subsequent cooling from 770 to 600 °C, we obtain a rate of 2.3±1.3 mm/year. First stages of exhumation most likely occurred under an overall compressional regime, whereas Devonian basin formation is associated to detachment movements during 389–375 Ma exhumation. This period of extension is followed by a much younger, decoupled thermal phase at 327±5 Ma, occurring under static conditions within very restricted zones, most likely in association with the circulation of fluid phases along old discontinuities. Initial isotopic signatures of Sr and Pb substantiate Paleo- to Meso-Proterozoic crust formation times of the Stadlandet UHP province precursor lithologies.  相似文献   

4.
On the basis of a representative collection of ultramafic rocks and chromite ores and a series of technological samples from the largest (Central and Western) deposits in the Rai-Iz massif of the Polar Urals and the Almaz-Zhemchuzhina and Poiskovy deposits in the Kempirsai massif of the southern Urals, the distribution and speciation of platinum-group elements (PGE) in various type sections of mafic-ultramafic massifs of the Main ophiolite belt of the Urals have been studied. Spectral-chemical and spectrophotometric analyses were carried out to estimate PGE in 700 samples of ultramafic rocks and chromite ores; 400 analyses of minerals from rocks, ores, and concentrates and 100 analyses of PGE minerals (PGM) in chromite ores and concentrates were performed using an electron microprobe. Near-chondritic and nonchondritic PGE patterns in chromitebearing sections have been identified. PGE mineralization has been established to occur in chromite ore from all parts of the mafic-ultramafic massifs in the Main ophiolite belt of the Urals. The PGE deposits and occurrences discovered therein are attributed to four types (Kraka, Kempirsai, Nurali-Upper Neiva, and Shandasha), which are different in mode of geological occurrence, geochemical specialization, and placer-forming capability. Fluid-bearing minerals of the pargasite-edenite series have been identified for the first time in the matrix of chromite ore of the Kempirsai massif (the Almaz-Zhemchuzhina deposit) and Voikar-Syn’ya massif (the Kershor deposit). The PGE grade in various types of chromite ore ranges from 0.1–0.2 to 1–2 g/t or higher. According to technological sampling, the average PGE grade in the largest deposits of the southeastern ore field of the Kempirsai massif is 0.5–0.7 g/t. Due to the occurrence of most PGE as PGM 10–100 mm in size and the proved feasibility of their recovery into nickel alloys, chromites of the Kempirsai massif can be considered a complex ore with elevated and locally high Os, Ir, and Ru contents. The Nurali-Upper Neiva type of ore is characterized by small-sized primary deposits, which nevertheless are the main source of large Os-Ir placers in the Miass and Nev’yansk districts of the southern and central Urals, respectively.  相似文献   

5.
Garnet-bearing peridotitic rocks closely associated with eclogite within the Tromsø Nappe of the northern Scandinavian Caledonides show good evidence for prograde metamorphism. Early stages are recognized as inclusions of hornblende and chlorite in the cores of large garnet poikiloblasts. Closer to the garnet rim, clinopyroxene and Cr-poor spinel appear as additional inclusion phases. Four suites of spinel inclusions can be distinguished based on optical properties and chemical composition. The innermost suite (suite 1) has the lowest Cr# and highest Mg#. Further rimward, the spinel inclusions gradually change in composition, with increasing Cr# and decreasing Mg#. Spinel is rare in the matrix, but locally chromitic spinel occurs as larger grains. Garnet poikiloblasts are rimmed by a kelyphite zone consisting of Hbl + Cr-poor Spl or Opx ± Cpx + Cr-poor Spl, and locally an inner zone of Na-rich Hbl + Chl. Matrix assemblage in the garnet-bearing peridotitic rocks is Hbl + Chl + Cpx + Ol ± Cr-rich spinel, defining a strong foliation wrapping around garnets and associated kelyphites. Thin layers of garnet-orthopyroxenite and garnet–hornblende–zoisite–chlorite rocks are presumably coeval with the matrix foliation of the peridotitic rocks.

In dunitic to harzburgitic compositions large undulatory grains of Ol + Opx ± Chl + Spl apparently define the maximum-P conditions. This assemblage is succeeded by a recrystallized assemblage of Ol ± Tlc ± Mgs, which in turn is overgrown by strain-free poikiloblasts of orthopyroxene, indicating a temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

PT estimates for the inclusion suites of clinopyroxene and spinel in garnet clearly indicate garnet growth and spinel consumption in a regime of increasing P. The inner suite (suite 1) apparently was in equilibrium with garnet, clinopyroxene and olivine at 1.40 GPa, 675 °C, whereas included spinel with maximum Cr# (suite 4) indicate 2.40 GPa at 740 °C. Grt + Opx from garnet-orthopyroxenite give 1.5–1.9 GPa at 740–770 °C, and Grt + Hbl + Zo + Chl from a zoisite-rich rock give 1.75 ± 0.25 GPa at 740 ± 30 °C, interpreted to represent recrystallization during uplift. In dunitic to harzburgitic compositions, early Ol + Opx ± Chl + Spl is succeeded by Ol ± Tlc ± Mgs, which in turn is overgrown by neoblasts of strain-free orthopyroxene, indicating temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

The ultramafic rocks in the Tromsø Nappe were locally strongly hydrated before subduction along with associated eclogites and metasedimentary rocks during the early (Ordovician) stages of the Caledonian orogeny.  相似文献   


6.
The 87Sr/86Sr ratios for a series of ultramafic rocks from the Lake Chatuge region range from 0.7023 to 0.7047, suggesting a direct upper mantle source and precluding a multiple differentiation origin for these alpine-type rocks. Higher 87Sr/86Sr ratios (0.7058–0.7068) for serpentinized rocks from this suite apparently reflect the influx of radiogenic 87Sr from the surrounding gneisses and schists during serpentinization.  相似文献   

7.
The Lyngen gabbro (LG), defining the major part of the Lyngen magmatic complex, is characterised by layered gabbros of N-MORB affinity (western suite) and layered gabbronorites, quartz-bearing gabbros and diorites/quartz-diorites of IAT (island-arc tholeiite) to boninitic affinity (eastern suite). The boundary between the eastern and western suites is generally defined by a large-scale ductile shear zone of suboceanic origin, the Rypdalen shear zone (RSZ). Tonalites occur within the RSZ and in the eastern suite of the LG. Variations in field occurrence and chemical composition of the tonalites suggest that they represent two petrologically different groups. Tonalite intrusion (the Vakkas pluton) up to 5 km2 large occur in the eastern suite of the LG, and are characterised by high Y contents (average 26 ppm) and high K2O/Rb ratios (average 0.062) compared to tonalites on the RSZ. The Vakkas pluton has lightly concave REE (rare earth element) patterns with negative Eu-anomalies, and positive ND-values (+3.7 to +3.9). Geochemical modelling based on the REE and field evidence suggests that these tonalites may have formed by fractional crystallization from a boninitic parental magma. Tonalites related to the RSZ form irregular veins and dikes that net vein the shear zone. They are characterised by low Y contents (average 6 ppm), low K2O/Rb ratios (average 0.025), and highly variable contents of Na2O, K2O, Sr and Ba, compared to the Vakkas pluton. Tonalites related to the RSZ show substantial variation in the content of the LREEs. They possess low abundances of the HREEs, and absence of, or slightly positive Eu-anomalies. The tonalites have highly variable ND-values (−0.6 to −9.4), probably resulting from enrichment of Nd from an external source. Geochemical modelling suggests that the LREE-rich tonalites formed by H2O-rich partial melting of differentiated products from the eastern suite of the LG. The presence of B in the fluid phase is suggested by the presence of tourmaline-bearing tonalite pegmatites. Thus, the anatectic tonalites of this group could have been formed by water-excess melting of a variety of gabbroic cumulates of the LG. In the LG, LREE-depleted tonalites (ND-values +5.1) also occur, and these are best explained in terms of partial melting of gabbroic cumulates from the transition zone between the eastern and the western suites of the LG.  相似文献   

8.
It seems possible to locate some of the volcanic centres of the greenstone effusions of the Caledonian geosynclinal volcanism in Norway from simple geologic features, such as greenstone thickness and character, gabbro intrusion intensity, and quartz keratophyre frequency. In the central part of the Trondheim region some six probable and four likely volcanoes are indicated. The best example may be the upturned Joma volcano further north.
Zusammenfassung Es scheint möglich, einige der vulkanischen Zentren der Grünsteineffusionen im Vulkanismus der kaledonischen Geosynklinale durch einfache geologische Merkmale wie Mächtigkeit und Charakter des Grünsteins, Intensität der Gabbrointrusion und Häufigkeit der Quarzkeratophyre aufzufinden. Im Mittelteil des Trondheimgebietes werden 6 wahrscheinliche und 4 mögliche Vulkane angegeben. Das beste Beispiel wäre vielleicht der umgekehrte Joma Vulkan weiter nördlich.

Résumé Il semble probable de localiser quelques-uns des centres volcaniques des émissions de « greenstone » dans le volcanisme géosynclinal calédonien en Norvège d'après des marques géologiques comme l'épaisseur et le caractère de «greenstone», l'intensité de la gabbro intrusion, et la fréquence de quartz kératophyre. Au milieu de la Trondheim région on constate six volcans probables et quatre volcans possibles. Le meilleur exemple est peut-être le Joma volcan renversé plus au nord.

, .: , , . Trondheim .


Dedicated to Professor Dr. A.Rittmann on the occasion of his 75. birthday  相似文献   

9.
沂水杂岩中超镁铁质岩的岩石地球化学特征   总被引:2,自引:0,他引:2  
主要以捕虏体形式存在于沂水岩浆杂岩和变质杂岩中的超镁铁质岩石不发育鬣刺结构,岩石化学组成以高MgO和低SiO2、TiO2、K2O含量为主要特征。按岩石中是否含有橄榄石大致可以分为橄榄辉石岩和尖晶角闪二辉石岩两种,前者以强烈发育蛇纹石化为特征,矿物组合以单斜(透)辉石+橄榄石为主(偶见斜方辉石),蚀变矿物组合为蛇纹石±铬铁矿+磁铁矿±角闪石±尖晶石等;后者以局部发育滑石化为特征,矿物组合以斜方(古铜)辉石+单斜(透)辉石+尖晶石为主,其次是角闪石+磁铁矿±滑石等。岩石总体以稀土元素总量(∑REE)相对较低、LREE/HREE=1.64~4.40为特征,稀土元素的球粒陨石标准化配分图解显示所有样品均具Eu和Ce的负异常,除3个橄榄辉石岩样品外,多数样品无明显的轻稀土元素、轻重稀土元素和重稀土元素分异。岩石的微量元素组成以不相容元素Rb、Ba、U、Nb、Sr、Zr等具有明显不同的异常为特征:Ba、Nb呈现负异常,而Rb、U呈现正异常,Sr部分呈正异常,Zr和Ti负异常出现在橄榄辉石岩中,其他样品无Zr异常。样品YS0631的SHRIMP锆石U-Pb定年结果显示其变质锆石年龄值为2 560~2 605 Ma;另有一颗结晶锆石的年龄值为2 719 Ma,εHf(t)值为8.2,亏损地幔模式年龄为2 680 Ma。综上所述,该超镁铁质岩石源于地幔,形成于新太古代早期,随后遭受深熔及岩浆作用影响,经历了变质作用的改造。  相似文献   

10.
Cretaceous alkaline intrusive rocks present in the Bitterfontein area comprise a suite having compositions ranging from olivine melilitite to syenite. These rocks which include some of lamprophyric affinity form part of the widespread dominantly alkaline suite of intrusives occurring in a broad zone parallel to the south western African coastal regions. This paper presents the petrology of the Bitterfontein alkaline rocks together with mineral and rock analyses. The chemistry of the rocks shows the suite to define a SiO2 enrichment trend linking the compositions of olivine melilitite to oversaturated basic rocks. This trend is compared with trends defined by essentially tholeiitic volcanics and kimberlite-olivine melilitite compositions and a genetic relationship with the latter is apparent. Polybaric crystallisation of a larnite normative liquid in a crustal environment coupled with fractionation especially of phlogopite is important in the generation of members of the Bitterfontein suite. Phlogopite fractionation represents a deviation by the Bitterfontein suite from the evolutionary trend predicted by experimental work for low pressure anhydrous compositions in the Fo-La-Ne-SiO2 system.  相似文献   

11.
12.
13.
Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides   总被引:10,自引:0,他引:10  
The Western Gneiss Region (WGR) marks the outcrop of a composite terrane consisting of variably re-worked Proterozoic basement and parautochthonous or autochthonous cover units. The WGR exhibits a gross structural, petrographic and thermobarometric zonation from southeast to northwest, reflecting an increasing intensity of Scandian (late Palaeozoic) metamorphic and structural imprint. Scandian-aged eclogites have been widely (though for kinetic reasons not invariably) stabilised in metabasic rocks but have suffered varying degrees of retrogression during exhumation. In the region between the Jostedal mountains and Nordfjord, eclogites commonly have distinctively prograde-zoned garnets with amphibolite or epidote–amphibolite facies solid inclusion suites and lack any evidence for stability of coesite (high pressure [HP] eclogites). In the south of this area, in Sunnfjord, eclogites locally contain glaucophane as an inclusion or matrix phase. North of Nordfjord, eclogites mostly lack prograde zoning and evidence for coesite, either as relics or replacive polycrystalline quartz, is present in both eclogites (ultrahigh pressure [UHP] eclogites) and, rarely, gneisses. Coesite or polycrystalline quartz after coesite has now been found in eight new localities, including one close to a microdiamond-bearing gneiss. These new discoveries suggest that, by a conservative estimate, the UHP terrane in the WGR covers a coastal strip of about 5000 km2 between outer Nordfjord and Moldefjord. A “mixed HP/UHP zone” containing both HP and UHP eclogites is confirmed by our observations, and is extended a further 40 km east along Nordfjord. Thermobarometry on phengite-bearing eclogites has been used to quantify the regional distribution of pressure (P) and temperature (T) across the WGR. Overall, a scenario emerges where P and T progressively increase from 500°C and 16 kbar in Sunnfjord to >800°C and 32 kbar in outer Moldefjord, respectively, in line with the distribution of eclogite petrographic features. Results are usually consistent with the silica polymorph present or inferred. The PT conditions define a linear array in the PT plane with a slope of roughly 5°C/km, with averages for petrographic groups lying along the trend according to their geographic distribution from SE to NW, hence defining a clear field gradient. This PT gradient might be used to support the frequently postulated model for northwesterly subduction of the WGC as a coherent body. However, the WGC is clearly a composite edifice built from several tectonic units. Furthermore, the mixed HP/UHP zone seems to mark a step in the regional P gradient, indicating a possible tectonic break and tectonic juxtaposition of the HP and UHP units. Lack of other clear evidence for a tectonic break in the mixed zone dictates caution in this interpretation, and we cannot discount the possibility that the mixed zone is, at least, partly a result of kinetic factors operating near the HP–UHP transition. Overall, if the WGC has been subducted during the Scandian orogeny, it has retained its general down-slab pattern of P and T in spite of any disruption during exhumation. Garnetiferous peridotites derived from subcontinental lithospheric mantle may be restricted to the UHP terrane and appear to decorate basement-cover contacts in many cases. PT conditions calculated from previously published data for both relict (Proterozoic lithospheric mantle?) porphyroclast assemblages and Scandian (subduction-related?) neoblastic assemblages do not define such a clear field gradient, but probably record a combination of their pre-orogenic PT record with Scandian re-working during and after subduction entrainment. A crude linear array in the PT plane defined by peridotite samples may be, in part, an artifact of errors in the geobarometric methods. A spatial association of mantle-derived peridotites with the UHP terrane and with basement-cover contacts is consistent with a hypothesis for entrainment of at least some of them as “foreign” fragments into a crustal UHP terrane during subduction of the Baltic continental margin to depths of >100 km, and encourages a more mobilistic view of the assembly of the WGC from its component lithotectonic elements.  相似文献   

14.
Strain has been measured from clasts within a deformed conglomerate layer at 17 localities around an asymmetric fold in the Rundemanen Formation in the Bergen Arc System, West Norwegian Caledonides. Strain is very high and a marked gradient in strain ellipsoid shape exists. To either side of the fold, strain within the conglomerate bed is of the extreme flattening type. In the fold, especially on the lower fold closure, the strain is constrictional. Mathematical models of perturbations of flow in glacial ice have produced folds of the same geometry as this fold, with a strikingly similar pattern of finite strain. The fold geometry and strain pattern, as well as other field observations, suggest that the fold developed passively, as the result of a perturbation of flow in a shear zone, where the strain was accommodated by simple shear accompanied by extension along Y.  相似文献   

15.
The distribution and characterization of UHP rocks within the Western Gneiss Region (WGR) of the Norwegian Caledonides is reviewed. While recent studies have documented a significantly increased number of eclogite localities preserving mineralogical evidence for Scandian-aged UHP metamorphism, much uncertainty remains over the regional extent of any UHP province because of the widespread overprinting by retrograde amphibolite-facies assemblages (especially in the dominant gneisses) during exhumation of the terrain. Based on current observations, the UHP metamorphic province may be limited to a northwest region of only~4000 km2, although an enigmatic mixed zone of HP (quartz-stable) and UHP (coesite-stable) eclogites extends a minimum of 5 km farther south and east in the Outer Nordfjord area.

Quantitative P-T evaluation of key mineral reaction equilibria for eclogites sampled across the WGR indicates an overall regional trend of increased T and P to the northwest. This is consistent with Baltic plate rocks in the northwestern part of the WGR having been subducted to greatest depths during the Scandian plate collision. The distribution of garnet peridotites within the WGR and their significance to understanding the nature, location, and timing of crust-mantle interaction within a major continental-plate subduction zone also is briefly considered.  相似文献   

16.
The Osen-Røa thrust sheet of the southern Norwegian Caledonides comprises the coarse clastic late Precambrian Sparagmite region, and the folded and imbricated Cambro-Silurian rocks of the Oslo region. Ramp-flat geometries occur in the hangingwall of the Osen-Røa thrust in the Mjøsa district. Two major ramps are recognized. One coincides with the strike of the Ringsaker inversion, while the other coincides with the traditional thrust front in the Gjøvik area. The Osen-Røa thrust cuts up section in the transport direction (south), eventually cutting out all late Precambrian rocks, to lie as a 150 km long flat in the Cambrian Alum shales of the Oslo region. The now eroded detachment termination probably died out horizontally in the Alum shales to end as a buried thrust front in the southern Oslo region. Restoration of hanging- and footwall cutoffs allows the amount of overthrusting to be calculated; the Sparagmite region/Oslo region boundary restores to a minimum of 130 km to the NNW. This displacement estimate agrees with estimates of 135 km NNW transport calculated from balanced cross-section restorations through the Oslo region.  相似文献   

17.
The magmatic products of the Leka Ophiolite Complex of Lower Ordovician age, indicate formation in different tectonic settings and generation from different mantle sources. Harzburgites of the mantle tectonite, clinopyroxenes from wehrlites of the ultramafic cumulates, the metabasalts of the dyke complex and earliest pillow lavas (IAT/MORB, boninites) all show characteristics compatible with formation above a subduction zone in an intra-oceanic setting. Nd-isotopes indicate that some of the IAT and boninites may have been derived from a source contaminated by continental material, and a CAB source differ significantly from that of the IAT and boninites. The later pillow lavas of MORB composition show only minor influence of subduction-related processes (minor or no negative Ta-anomalies), and the supposed latest volcanic sequence of an alkaline OIB-type, none at all. The MORB- and OIB-type magmas are thought developed by spreading in a back-arc setting, in which the latter magma type developed in a remote position from the subduction zone.  相似文献   

18.
The Lyngen Magmatic Complex (LMC) of North Norway, consists of a western suite of layered gabbros of normal-mid oceanic ridge basalt (N-MORB) affinity and an eastern suite of layered gabbronorites, quartz-bearing gabbros and diorites/quartz-diorites of IAT (island-arc tholeiitte) to boninitic affinity. The boundary between the suites is defined by a large-scale ductile shear zone, the Rypdalen shear zone (RSZ). In this shear zone anatectic tonalites were generated by partial melting of the gabbro in the presence of an H2O bearing fluid phase.Quartz from the tonalites contains early secondary and secondary liquid-dominated inclusions (88-99 wt.% H2O), with an average salinity of 18 wt.% (calculated as NaCleq). Combined gas and ion chromatography shows that the major ions in the fluid are Cl, Ca2+, Na+ with smaller amounts of K+, Mg2+, Sr2+, Br and NO3. The dominant non-H2O volatile species is N2 (0.5-10%), and small amounts of CO2, CH4 and other hydrocarbons are also present.The cation concentrations in the fluid are variable, due to element exchange during interaction of the fluids with the tonalites, amphibolites and metagabbros of the RSZ. The fluid contributed Na+ and K+ to the melt and gained Ca2+ in exchange, explaining the variable Na+/Ca2+ ratio of the fluid. The Br and Cl contents of the fluid inclusions plot on the same line as evaporating sea water, which strongly suggests a seawater origin for the fluid phase, and a seawater source fits well with other geochemical signatures and the tectonic setting of the LMC.It is suggested that seawater escaped from a subducting slab and was channelled along the Rypdalen shear zone. This caused anatexis of the gabbro, generating tonalitic melts at 0.5-0.9 GPa and 680-800°C.  相似文献   

19.
Located in the northwestern part of the Charlotte terrane of the Carolina zone in central North Carolina, the Mocksville complex is a tabular body which trends NE-SW and covers an area of approximately 500?km2. It consists of late Proterozoic to early Paleozoic, moderately metamorphosed and variably deformed, mainly plutonic ultramafic, mafic and felsic rocks. The ultramafic rocks are pyroxenites, wehrlites, and hornblendites; the mafic rocks are metagabbros and amphibolites; and, the felsic rocks are granites and diorites. Field, geochemical, and geothermobarometry studies suggest that the igneous and metaigneous rocks of the Mocksville complex are likely to be genetically related, formed by calc-alkaline differentiation of mafic magma, and originated in a moderate pressure environment (~8?kbar). Based mainly on the study of volcanic rocks, the terranes of the Carolina zone have been interpreted as magmatic arc terranes in most tectonic models concerning the evolution of the southern Appalachian orogen. The geochemical features of the mafic and ultramafic plutonic rocks of the Mocksville complex corroborate the arc origin of the Charlotte terrane.  相似文献   

20.
The concentrations of the trace elements Na, K, Rb and Sr and the isotopic composition of Sr have been measured in a suite of ultramafic rocks, including alpine-type intrusions, inclusions in basalts and kimberlite pipes, zones from stratiform sheets, and a mica peridotite. From these data and those available in the literature the following conclusions can be drawn. Alpine-type ultramafic material appears to be residual in nature and can be neither the source material for the derivation of basalts nor the refractory residue of modern basalts. Alpine-type ultramafic intrusions appear to have no relationship with ultramafic zones in stratiform sheets and were probably derived from the upper mantle. A genetic relationship exists between basalts and their ultramafic inclusions, but it is extremely doubtful that this inclusion material could give rise to basalts by partial fusion. There is a possible genetic relationship between basalts and ultramafic inclusions in kimberlite pipes, and this ultramafic material is a potential source for the derivation of basalts. Ultramafic inclusions in basalts are probably not fragments of an alpine-type ultramafic zone in the mantle. An attempt has been made to synthesize the data and interpretations of this study by way of speculations on the role of ultramafic rocks in the differentiation history of the earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号