首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
王茹  李海艳  孟雷 《海洋学报》2019,41(11):1-14
不同科研工作者对黑潮延伸体区域和北太平洋副热带逆流区域的中尺度现象进行过不同的研究,但对两区域中尺度涡进行统一比较分析的工作较少。因此,本文利用11年的卫星高度计海表面高度异常资料分别对这两个区域的中尺度现象特征及其能量变化过程进行系统的分析和对比。研究发现,两区域的气旋涡与反气旋涡在分布、振幅、能量和寿命上均存在差异;进一步的动能谱分析和能量串级讨论发现:两区域的动能谱密度虽均集中在2×10–3~4×10–3 周/km的波数域上,但黑潮延伸体区域大部分涡旋信号分布在经向上,而北太平洋副热带逆流区域主要分布在纬向上,这可能与两区域中尺度涡能量来源的不同有关。由于两区域在2×10–3~3×10–3 周/km的波数域上动能转移项以负值为主,这说明两区域在此波数域上均存在能量源,并且发生能量逆向串级。  相似文献   

2.
季页  杨洋  梁湘三 《海洋学报》2022,44(9):23-37
基于一套涡分辨模式数据,本文利用一种新的泛函工具—多尺度子空间变换—将孟加拉湾(BOB)海域的环流系统分解到背景流(>96 d)、中尺度(24~96 d)和高频尺度(<24 d)3个子空间,并用正则传输理论探讨了3个尺度子空间之间内在的非线性相互作用。结果表明,BOB西北部边界和斯里兰卡岛东部是BOB海域多尺度相互作用最显著的区域,中部则较弱。前两个区域的背景流大多正压、斜压不稳定,动能和有效位能正则传输主要表现为正向级串;后者则以逆尺度动能级串为主。具体来说,在BOB西北部与斯里兰卡东部,中尺度涡动能(EKE)主要来源于正压能量路径(即背景流动能向EKE传输),其次来源于斜压能量路径(即背景流有效位能向中尺度有效位能传输,并进一步转换为EKE)。通过这两个能量路径得到的EKE向更高频的扰动传输能量,起到了耗散中尺度涡的作用。不同于此二者,BOB中部海域的EKE和高频尺度动能主要通过斜压路径获得,随后通过逆尺度级串将动能返还给背景流。苏门答腊岛的西北部也是中尺度和高频尺度扰动较强的海域,正压能量路径和斜压能量路径均是该海域扰动能的来源,但以斜压能量路径为主。  相似文献   

3.
Rhines效应是指Rossby波和大湍流(中尺度涡)相互作用,将涡动能量以波的形式传播出去,从而使中尺度涡发生形变,最终消亡的一种动力学机制。本文通过比较海洋里涡特征速度和Rossby长波波速的方法,研究了一种广义的Rhines效应对高度计观测的海洋中尺度涡空间分布特征的影响。结果显示,广义Rhines效应比只考虑行星涡度梯度的传统形式对中尺度涡的分布具有更显著的影响。大部分中尺度涡分布在涡特征速度(Ue)大于由广义Beta值计算的Rossby长波波速(Ucg)的区域。这些涡可以由动能反向串级过程获取能量,成长为振幅和空间尺度较大的涡。热带海域以外的“涡旋沙漠”区域,中尺度涡的数量稀少,强度很弱,大都分布于Uecg的海域。广义Rhines效应可能是这些海域中尺度涡难以成长的动力学机制。  相似文献   

4.
Evolution and breaking of a propagating internal wave in stratified ocean   总被引:2,自引:2,他引:0  
The evolution and breaking of a propagating internal wave are directly numerically simulated using a pseudo-spectral method. The mechanism of PSI ( parametric subharmonic instability) involved in the evolution is testified clearly. It dominates gradually in nonlinear resonant interactions. As a consequence, the energy cascades to a second plant wave packet which has lower frequencies and higher wavenumbers than that of the primary wave. With the growth of this wave packet, wave breaking occurs and causes strongly nonlinear regime, i.e. stratified turbulence. The strong mixing and intermittent of the turbulence can be learned from the evolution of the total energy and kurtosis of vorticity vs. time. Some statistic properties of the stratified turbulence are also analyzed, including the spectra of KE (kinetic energy) and PE (potential energy). The results show that the PE spectra display a wavenumber range scaling as 0. 2 N^4ky^-3 (N is the Brunt - Vaisala frequency, k, is the vertical wavenumber), which is called buoyancy sub-range. However, the KE spectra cannot satisfy the negative cubic law of vertical wavenumber, which have a much larger downtrend than that of the PE spectra, for the potential energy is transferred more efficiently toward small scales than the kinetic energy. The Cox number of diapycnal diffusivity is also calculated, and it shows a good consistency with the observations and deductions in the ocean interior, during the stage of the stratified turbulence maintaining a fairly active level.  相似文献   

5.
Global, high-quality, satellite-based observation of oceanic currents over the past 13 years has revealed ubiquitous quasi-horizontal eddies in the mesoscale (tens to hundreds of kilometers), confirming the view of a highly turbulent ocean suggested by observational programs in the 1970s. Idealized quasigeostrophic turbulence models suggest mesoscale turbulent flow can vary between isotropic, and highly anisotropic zonal jets. Here we compare the zonal and meridional velocity variance from satellite altimetry. We find that, for an unexplained reason and despite the chaotic nature of turbulence, the surface flow is organized into mesoscale patches where either zonal or meridional velocity variance dominates. The patches persist over 13 years, much longer than the turbulent timescale of a few months. Implications include potentially highly anisotropic redistribution of tracers by the mesoscale flow. Zonally averaged velocity variances reveal a slight preference for meridional over zonal velocity variance. Realistic primitive equation models succeed in reproducing both the patchy structure in local preference for either zonal or meridional velocity variance, and the zonally averaged preference for meridional variance. Idealized models of fully developed, quasigeostrophic turbulence fail in both regards.  相似文献   

6.
黑潮延伸体上游中尺度涡场的年代际振荡及其相关机制   总被引:1,自引:1,他引:0  
黑潮延伸体上游区域的中尺度涡场的涡动能和涡特征尺度存在显著地年代际振荡,和黑潮延伸体路径的年代际变化有很好的相关性。当黑潮延伸体路径比较稳定时,其上游区域涡动能比较高,涡特征尺度比较大,反之相反。通过对黑潮延伸体上游区域的中尺度涡场进行集合分析发现:当黑潮延伸体处于稳定状态时,上游涡场几乎是各向均匀地,有轻微的径向伸长;而当黑潮延伸体处于不稳定状态时,上游的中尺度涡场有显著地纬向伸长。对与中尺度涡场的产生相关的线性斜压不稳定和正压不稳定进行了计算分析,结果显示,线性斜压不稳定不是控制中尺度涡场年代际变化的机制,而正压不稳定对中尺度涡场的年代际变化有积极的贡献。不稳定产生的中尺度涡之间存在非线性涡-涡相互作用。  相似文献   

7.
海洋是多尺度强迫-耗散系统,机械能主要在大尺度输入,在小尺度耗散。在大、中尺度运动的能量向小尺度湍流传递过程中,内波扮演着重要角色。内波的生成和破碎可打破海洋动力平衡,而在陆架区,内波(主要是内孤立波)的浅化演变与耗散则是驱动湍流混合的关键过程。通过长期的理论、观测与数值模拟研究,目前已认识到内波浅化过程中主要发生如下演变:波形调制、极性转变、裂变、破碎与耗散。相较于直接发生破碎,浅化演变过程中的裂变及其引发的剪切不稳定和对流不稳定是内孤立波在陆架区的主要耗散机制,显著调制陆架区的跃层混合。从能量串级的角度讲,内孤立波浅化裂变为动力不稳定的高频内波是潮能串级的重要通道。本文简要回顾南海北部陆架区内波的研究历史,并着重总结内波在陆架区演变与耗散机制的研究进展。  相似文献   

8.
次中尺度过程的水平空间尺度约为0.1~10km, 时间尺度约为1天, 里查森数和罗斯贝数为0(1), 能有效地从中尺度环流中汲取能量向小尺度湍流串级, 并对上层海洋物质的垂向交换有着重要影响。本文基于水平分辨率为~500m的高分辨率ROMS(regional ocean modeling system)数值模拟结果, 采用方差椭圆方法, 评估了黑潮延伸体海域上层海洋次中尺度涡旋的各向异性特征, 并探讨了涡旋各向异性值的大小与次中尺度过程特征参数的相关性。研究结果表明, 黑潮延伸体主轴强流区域的次中尺度涡旋各向异性值明显小于两侧海域, 主轴区域的次中尺度涡旋特征明显强于流轴两侧海域, 各向异性值与次中尺度过程的强弱有着较为显著的负相关关系, 表明次中尺度过程具有较小的各向异性特征(更趋各向同性)。方差椭圆表征了涡与平均流相互作用过程中的能量反馈机制, 较大的各向同性特征意味着动能更趋正向串级。  相似文献   

9.
Sea surface temperature fields in the East Sea are composed of various spatial structures such as eddies, fronts, filaments, turbulent-like features and other mesoscale variations associated with the oceanic circulations of the East Sea. These complex SST structures have many spatial scales and evole with time. Semi-monthly averaged SST distributions based on extensive satellite observations of SSTs from 1990 through 1995 were constructed to examine the characteristics of their spatial and temporal scale variations by using statistical methods of multi-dimensional autocorrelation functions and spectral analysis. Two-dimensional autocorrelation functions in the central part of the East Sea revealed that most of the spatial SST structures are anisotropic in the shape of ellipsoids with minor axes of about 90–290 km and major axes of 100–400 km. Two dimensional spatial scale analysis demonstrated a consistent pattern of seasonal variation that the scales appear small in winter and spring, increase gradually to summer, and then decrease again until the spring of the next year. These structures also show great spatial inhomogeneity and rapid temporal change on time scales as short as a semi-month in some cases. The slopes in spectral energy density spectra of SSTs show characteristics quite similar to horizontal and geostrophic turbulence. Temporal spectra at each latitude are demonstrated by predominant peaks of one and two cycles per year in all regions of the East Sea, implying that SSTs present very strong annual and semi-annual variations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Alternating zonal flows in an idealized wind-driven double-gyre ocean circulation have been investigated using a two-layer shallow-water eddy-permitting numerical model. While the alternating zonal flows are found almost everywhere in the time-mean zonal velocity field, their meridional scales differ from region to region. In the subpolar western boundary region, where the energetic eddy activity induces quasi two-dimensional turbulence, the alternating zonal flows are generated by the inverse energy cascade and its arrest by Rossby waves, and the meridional scale of the flows corresponds well to the Rhines scale. In the eastern part of the basin, where barotropic basin modes are dominant, the zonal structure is formed through the nonlinear effect of the basin modes and is wider than the Rhines scale. Both effects are likely to form zonal structure between the two regions. These results show that Rossby basin modes become an important factor in the formation of alternating zonal flows in a closed basin in addition to the arrest of the inverse energy cascade by Rossby waves. The wind-driven general circulation associated with eddy activities plays an essential role in determining which mechanism of the alternating zonal flows is possible in each region.  相似文献   

11.
两个西边界流延伸体区域中尺度涡统计特征分析   总被引:3,自引:2,他引:1  
黑潮和湾流是世界大洋中最典型的两支西边界流,黑潮延伸体(Kuroshio Extention,KE)和湾流延伸体(Gulf Stream Extention,GSE)区域中尺度涡活动十分活跃。本文综合利用卫星高度计资料和Argo浮标资料,对KE和GSE区域中尺度涡的表层特征及其对温盐影响进行了统计研究和对比分析。结果表明:黑潮和湾流主轴附近为涡旋频率的高值区,主轴南北两侧分别以气旋涡和反气旋涡数量占多,主轴附近的涡旋强度明显大于其他区域;两个区域的涡旋以西向移动为主,气旋涡和反气旋涡都具有向南(赤道)偏离的趋势;两个区域的涡旋数量都以夏、秋季较多,涡旋强度都在春、夏季较大,且GSE区域涡旋强度明显大于KE区域;气旋涡(反气旋涡)引起内部明显的温度负(正)异常,KE区域气旋涡(反气旋涡)内部呈"负-正"("正-负")上下层相反的盐度异常分布,GSE区域气旋涡(反气旋涡)在各层呈现较为一致的盐度负(正)异常;两个区域中尺度涡对温盐场的平均影响深度可达1 000×104 Pa以上。  相似文献   

12.
Phytoplankton patchiness: the role of lateral stirring and mixing   总被引:1,自引:0,他引:1  
Explanations for the patchy distribution of marine phytoplankton are critically reviewed with the focus on the role played by lateral advection and mixing. Generating mechanisms for what is increasingly seen as a ubiquitous feature of the oceans have been sought in biology, behaviour, population dynamics, physics and various combinations thereof. As the mesoscale and sub-mesoscale (1-500 km) contain the “weather” of the ocean—eddies and fronts capable of strong stirring and mixing of any tracers advected by them—the physical circulation in this regime may have a strong role in the generation of patchiness. As a consequence, the focus here is on the ways the turbulent currents at these scales can interact with other processes to produce the complex spatial structures in phytoplankton distributions seen in countless satellite images and cruise data. The mechanisms reviewed include patch formation (KiSS theory), filamentation, Turing and related instabilities, diffusion waves, shear effects and turbulent stirring. Parallel to this is a discussion of observations and of the techniques that have been used to analyse them, particularly spectral analysis. It will be seen that many of the limitations in extant theories stem from a paucity of data and ambiguity in its interpretation. A synthesis of recent developments in sampling, instrumentation, image analysis and turbulence theory is used to suggest alternatives to conventional approaches, to highlight important work in related fields and to motivate new lines of research.  相似文献   

13.
一个典型南海北部第二模态内孤立波的观测分析   总被引:1,自引:0,他引:1  
第二模态内孤立波在海洋中极少被观测到。本文基于潜标高时空分辨率观测数据,对南海北部陆架区的一个典型第二模态内孤立波进行了分析。结果表明,该第二模态内孤立波的流核出现在135 m深度处,其最大水平流速为0.66 m/s,传播方向为西偏北58°。沿传播方向的内孤立波流速分布在80~170 m的深度范围内,而与传播方向相反的逆流出现在海表和海底附近。垂向模态分析表明,该第二模态内孤立波水平流速的垂向结构与理论结果吻合良好。能量计算结果显示其动能密度的垂向积分可达14 kJ/m2,而波峰线方向单位长度上的动能估算值为5.98 MJ/m。尽管该第二模态内孤立波的动能比陆架区第一模态内孤立波小1个量级,但其高达0.045 s-1的流速垂向剪切约为典型第一模态内孤立波的2倍,表明其导致的混合可能更强。  相似文献   

14.
The Kuroshio, one of the most energetic western boundary currents in the world, shows variations in its mesoscale features and recirculation gyres, providing an excellent test case of interactions between the mesoscale field and Kuroshio Extension (KE) states. A three-layer quasi-geostrophic model was used to reconstruct flow fields continuous in time and the horizontal plane from the TOPEX/POSEIDON altimeter data based on the variational method. Compared with the solutions obtained by the nudging method, the present results proved that the variational solution was closer to the real field. In the assimilation period, 1993–1997, the baroclinic instability index (BII) was defined to be the phase shift from the uppermost layer to the lowest layer with mesoscale features. In the first half of the assimilation period, the KE took the transition from the elongated to contracted states, in which BII decreased gradually, as a consequence of the KE state shift. In the second half period, BII increased in the downstream region just west of the Shatsky Rise, in which baroclinic instability contributed to the final stage of the contracted state, and was followed by rapidly weakened instability as a trigger of the opposite transition from the contracted to elongated states. The wind-driven recirculation gyre played an active role on the KE transition in the first half period, although not in the second half.  相似文献   

15.
A finite-difference quasigeostrophic (QG) model of an open ocean region has been employed to produce a dynamically constrained synthesis of acoustic tomography and satellite altimetry data with in situ observations. The assimilation algorithm is based upon the 4D variational data interpolation scheme controlled by the model's initial and boundary conditions. The data sets analyzed include direct and differential travel times measured at the array of five acoustic transceivers deployed by JAMSTEC in the region of the Kuroshio Extension in 1997, Topex/Poseidon altimetry, CTD soundings, and ADCP velocity profiles. The region monitored is located within the area 27.5°–36.5°N, 143°–155°. The results of assimilation show that mesoscale variability can be effectively reconstructed by five transceivers measuring direct and reciprocal travel times supported by relatively sparse in situ measurements. The misfits between model and data lie within the observational error bars for all the data types used in assimilation. We have compared the results of assimilation with the statistical inversion of travel time data and analyzed energy balances of the optimized model solution. Energy exchange between the depth-averaged and shear components of the observed currents reveals a weak decay of the barotropic mode at the rate of 0.2 ± 0.7⋅10−5 cm2/s3 due to topographic interaction. Mean currents in the region are unstable with an estimate of the available potential energy flux from the mean current to the eddies of 4.7 ± 2.3⋅10−5 cm2/s3. Kinetic energy transition has the same sign and is estimated as 2.8 ± 2.5⋅10−5 cm2/s3. Potential enstrophy is transferred to the mesoscale at a rate of 5.5 ± 2.7⋅10−18 s−3. These figures provide observational evidence of the properties of free geostrophic turbulence which were predicted by theory and observed in numerical experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
本文基于坐底式逆向回声仪(current and pressure recording inverted echo sounder, CPIES)实测海底压强和海底流速数据对黑潮延伸体时变正压动力过程和动能串级进行研究。先对CPIES数据进行去噪、网格化、调平等预处理,获得黑潮延伸体正压动力高度网格和海底流速网格,后进一步计算得到正压动力高度分布图、正压涡动能分布图以及正压动能通量谱。结果表明:1)在无外力作用时,正压动力高度起伏会使海水从动力高的地方向低的地方流入从而产生较高的涡动能,而一旦有外力强迫,海水有从动力高度低的地方向高的地方流入的可能,从而使得正压动力高度不断增加涡动能增强;2)通过分析9个月长时间平均正压动能通量谱,验证了地转湍流理论中的正压反向动能串级; 3)对黑潮延伸体月平均正压动能通量作谱分析发现,涡动能的大小会影响动能通量幅值变化,当涡动能升高,动能通量谱振幅变大,正向/反向动能串级增强,反之亦然。此外,正压动能串级随着时间变化,表现为2004年6月至8月反向动能串级尺度向小尺度移动并且强度增强; 2004年9月反向动能串级突然减弱,2004年9月至11月出现了...  相似文献   

17.
Effects of mesoscale eddies on the internal solitary wave propagation   总被引:3,自引:1,他引:2  
The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary wave propagation. An ocean eddy is produced by a quasi-geostrophic model in f-plane, and the one-dimensional nonlinear variable-coefficient extended Korteweg-de Vries (eKdV) equation is used to simulate an internal solitary wave passing through the mesoscale eddy field. The results suggest that the mode structures of the linear internal wave are modified due to the presence of the mesoscale eddy field. A cyclonic eddy and an anticyclonic eddy have different influences on the background environment of the internal solitary wave propagation. The existence of a mesoscale eddy field has almost no prominent impact on the propagation of a smallamplitude internal solitary wave only based on the first mode vertical structure, but the mesoscale eddy background field exerts a considerable influence on the solitary wave propagation if considering high-mode vertical structures. Furthermore, whether an internal solitary wave first passes through anticyclonic eddy or cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest the formation of the waves. Apart from topography effect, it is shown that the mesoscale eddy background field is also a considerable factor which influences the internal solitary wave propagation and deformation.  相似文献   

18.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

19.
中尺度涡蕴含海洋超过90%的动能, 显著影响海洋物质能量循环。对中尺度涡的预报是目前物理海洋学研究的热点和难点。文章基于卫星高度计观测的近30年海表面高度异常数据(sea level anomaly, SLA), 采用基于博弈思想的生成对抗网络方法(generative adversarial networks, GAN), 构建了中尺度涡预报模型, 进行了28天预报, 并采用独立样本分析了预报涡旋的空间分布、时间分布、能量强度等特征参数, 探讨影响预报结果准确性和时效性的主要因素。结果表明, 半径为100~200km的涡旋在15天左右的预报时长仍能保持较好的准确性及时效性, 误差在20%以内。该区域的平均涡动能约为0.875m2·s-2, 其预报的均方根误差(root mean square error, RMSE)普遍介于0.02~0.04m2·s-2。且涡旋预报结果受异常天气影响较小, 在正常天气条件和台风娜基莉条件下具有相似的预报能力。这些结果对进一步理解并应用生成对抗网络这一新方法预报海洋中尺度涡提供了参考。  相似文献   

20.
Recent numerical studies (Hibiya et al., 1996, 1998, 2002) showed that the energy cascade across the internal wave spectrum down to small dissipation scales was under strong control of parametric subharmonic instabilities (PSI) which transfer energy from low vertical mode double-inertial frequency internal waves to high vertical mode near-inertial internal waves. To see whether or not the numerically-predicted energy cascade process is actually dominant in the real deep ocean, we examine the temporal variability of vertical profiles of horizontal velocity observed by deploying a number of expendable current profilers (XCPs) at one location near the Izu-Ogasawara Ridge. By calculating EOFs, we find the observed velocity profiles are dominated by low mode semidiurnal (∼double-inertial frequency) internal tides and high mode near-inertial internal waves. Furthermore, we find that the WKB-stretched vertical scales of the near-inertial current shear are about 250 sm and 100 sm. The observed features are reasonably explained if the energy cascade down to small dissipation scales is dominated by PSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号