首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
北极海冰的快速减退是近年来全球变化最重要的现象,对全球气候产生显著影响。海表面风场是影响海冰变化的核心因素,但风场对各个海域海冰变化的贡献有很大差异,需要深入了解海表面风场对各个边缘海的贡献才能理解北极海冰变化的原因。本文采用SVD方法,分析海冰面积显著变化时的矢量风场与海冰密集度变化的关系,探讨风场对各个海域海冰的总体影响及对整个北极海冰变化的贡献。结果表明,各海区海冰密集度的变化都与海面风场有联系,但相关程度有明显差异,表明在有些海域风场起支配性作用,而在另一些海域其他因素的作用也很显著。对海冰产生影响的风场类型主要有三类:纬向风、经向风和气旋式风场。在波弗特海-拉普捷夫海这4个海域中,仅有1种类型的风场(纬向风或经向风)对海冰产生显著影响,同一海域海冰密集度呈现位相一致的变化。而在其他海域,有2种类型的风场(纬向风与气旋式风场,经向风与气旋式风场)影响海冰变化,同一海域的海冰密集度会呈现位相相反的变化。北极海冰的变化是一个整体,各个边缘海的海冰既有各自的变化特点,又有很好的整体协同变化特点。而2004年以来,加拿大海盆反气旋式风场与欧亚海盆弱的气旋式风场的整体结构呈现逐渐加强的趋势,有利于北极海冰的进一步减退。  相似文献   

2.
1982-2016年北极开阔水域变化   总被引:1,自引:0,他引:1  
李海丽  柯长青 《海洋学报》2017,39(12):109-121
近30年来,北极海冰覆盖范围大幅缩减,开阔水域也相应地发生显著变化。本文利用美国雪冰中心的海冰密集度产品以及美国海洋和大气科学管理局的海水表面温度数据产品,分析了1982-2016年北极开阔水域面积以及开阔水域季节长度的年际变化,并进一步探讨了海水表面温度对开阔水域时空变化的影响。结果表明北极开阔水域面积平均每年增加55.89×103 km2,海冰消退时间以平均0.77 d/a的速度在提前,海冰出现时间以平均0.82 d/a的速度在延迟,导致开阔水域季节长度以平均1.59 d/a的速度在增加。2016年达到了有遥感观测资料以来开阔水域面积和开阔水域季节长度的最大值,分别为13.52×106 km2和182 d。9个海区的开阔水域变化特征有一定的差异,对开阔水域变化贡献最大的有北冰洋核心区、喀拉海和巴伦支海。海水表面温度对开阔水域的变化有着重要影响,且影响的程度与纬度相关,即高纬度地区的海水表面温度对开阔水域的影响高于低纬度地区。  相似文献   

3.
太平洋夏季水对加拿大海盆海冰的影响   总被引:1,自引:0,他引:1  
宋雪珑  周生启 《海洋学报》2014,36(11):38-45
近年来,北极海冰发生了大面积减少,减少的原因仍存在着争议。基于2003-2011年的水文和遥感卫星数据,对北冰洋加拿大海盆的太平洋水和海冰进行研究。通过对比2006年和2007年太平洋水位温与海冰密集度的空间分布,发现太平洋水暖异常于2007年1-3月进入加拿大海盆的中部,并可能导致了2007年夏季海冰大面积的融化。2003-2011年,在加拿大海盆的中部,太平洋水位温与海冰密集度存在着时间上的负相关。选取2007年8月,发现两者在空间上也存在着负相关。这很可能说明太平洋水暖异常在流动的过程中,向上输送了热量,在一定程度上,融化了海冰,从而触发海冰-反照率正反馈,导致海冰的减少。因此,通过白令海峡进入北冰洋的太平洋夏季水,对北极海冰面积的减少有着重要影响。  相似文献   

4.
利用1979—2012年Nimbus-7和DMSP海冰密集度资料对北极海冰进行研究。EOF分析结果表明整个北极海域海冰密集度变化具有非常强的季节变化特征,海冰最多的月份在1—4月、最少的在7—10月,其中鄂霍次克海和日本海、白令海等海域夏季无冰。北极海冰变化的总体趋势是减少,喀拉海和巴伦支海的减少速度最快,只有白令海海冰密集度呈增加趋势。北极区域海冰面积异常变化的主要周期一般在1 a左右,喀拉海和巴伦支海的主周期较长,为18.5 a。  相似文献   

5.
全球碳增汇需求高涨,海冰消退后的北冰洋被期待是一个主要的潜在碳增汇区。北冰洋太平洋扇区因受控于楚科奇海及其邻近海域较高的海洋固碳效率和碳深海封存量,在整个北冰洋碳循环中起着举足轻重的作用。开展该海域碳循环过程对环境快速变化的响应机制研究是实现北冰洋碳汇精准预测的基础。本文重点阐述了楚科奇海及其邻近海域碳循环过程(即海洋对大气二氧化碳的吸收、生物固碳、太平洋入流携带碳经陆架生物地化过程后向深海输出封存的陆架泵)对北冰洋环境快速变化的响应,并提出未来研究需要聚焦的关键科学问题。  相似文献   

6.
海冰是极地气候系统重要组成部分。基于1982—2004年的卫星反照率、海冰密集度数据,选取了7个北极海域(分别位于格陵兰海、巴伦支海、喀拉海、拉普捷夫海、东西伯利亚海及以北海域、楚科奇海及以北海域和波弗特海及以北海域)进行了研究。对比分析发现,两数据区域平均序列相关性比较高,最低相关系数为0.51,最高相关系数为0.94。格陵兰海海域和巴伦支海海域夏季海表反照率、海冰密集度较低,多为无冰海面;喀拉海域、拉普捷夫海域、东西伯利亚海及以北海域6月份海表反照率、海冰密集度较高,7、8月份海冰加速融化,海冰密集度下降明显;楚科奇海及以北海域、波弗特海及以北海域夏季海表反照率、海冰密集度较高。7个海域海表反照率、海冰密集度均呈现下降趋势,西部的楚科奇海及以北海域、波弗特海及以北海域下降速度最快,巴伦支海海域下降速度最慢。海表反照率和海冰总量的减少,对气候演变有着重要影响。  相似文献   

7.
本文基于ICDC海冰密集度、冰厚及NSIDC冰速数据,分析了喀拉海工程海冰时空变化特征,并采用ECMWF大气强迫资料,进一步分析了影响喀拉海冰情的热力与动力因素。结果显示,喀拉海海冰冰情总体呈现由重变轻趋势;海冰时空变化显著,存在8个月的高密集度完全冰封期,冬季月份全海域冰厚高于60cm,夏季西南部冰厚低于20cm,冻结快,融化慢;油气代表点处冰厚频率分布呈双峰状,常冰向及强冰向以NW、NNW及SSE方向为主;冬季积温是决定融冻期海冰覆盖率特征和增长期冰厚指数的主要因素;自2005年起,喀拉海夏季几近无冰,经向风场与海冰覆盖率开始存在相关性。  相似文献   

8.
魏硕  张永莉  聂红涛  魏皓 《海洋学报》2022,44(5):92-101
波弗特海海冰的剧烈变化对区域内生态系统以及经济活动具有重要影响。基于美国国家冰雪数据中心发布的海冰密集度数据,本文对2019年波弗特海夏季海冰面积出现极端低值的机制进行了探讨。2019年融冰季(5–9月)海冰覆盖面积为1.38×105 km2,远低于1998–2020年平均面积2.28×105 km2,统计2019年前秋(2018年10–12月)和前冬季节(2019年1–4月)海冰覆盖面积,发现其与1998–2019年多年平均结果无显著差异;先前季节的海冰冰况不是造成极端低值事件的主要原因。综合海冰漂移场、海冰厚度、10 m风场以及海表面净热通量数据发现,2019年5月份海冰面积减小2.33×105 km2,是1998年以来5月海冰损失量最大的年份,占融冰季节海冰面积减小量的62%。与1998年、2008年、2012年以及2016年波弗特海夏季发生海冰覆盖面积极端低值现象的机制不同,不断减小的海冰厚度以及2019年5月异常强的风场,促使海冰快速向外输出,波弗特海南部5月16日就形成开阔水域;伴随着异常高的海表面净热通量使得海冰更多地融化,造成了2019年夏季海冰的异常现象。随着海冰厚度的不断变薄,海冰对风场的响应越来越强,海冰消退时间不断提前,波弗特海夏季海冰的极端低值现象可能更为频繁地出现。  相似文献   

9.
1979-2012年北极海冰运动学特征初步分析   总被引:3,自引:3,他引:0  
利用美国冰雪数据中心(NSIDC)发布的海冰速度和范围数据,本文分析了1979—2012年间北极海冰的运动学特征,以及北极海冰运动与分布范围演变之间的关系。结合欧洲中期天气预报中心(ECMWF)发布的2007和2012年高分辨率的气压场、风场数据,探讨了北极风场和气压场与海冰运动、辐散辐合和海冰面积的关系。结果表明,在1979-2012年间北极海冰平均运动速度呈显著增强的趋势,冬季海冰平均运动速度增加趋势明显强于夏季;北极、波弗特-楚科奇海域和弗拉姆海峡的冬、夏季海冰平均运动速度的增加率分别为2.1%/a和1.7%/a、2.0%/a和1.6%/a以及4.9%/a和2.2%/a。1979-2012年北极海冰平均运动速度和范围的相关性为-0.77,二者存在显著的负相关关系。北极冬季和夏季风场的长期变化趋势与海冰平均运动速度的变化趋势一致,冬季和夏季的相关系数分别为0.50和0.48。风场和气压场对海冰的运动、辐散及重新分布发挥着重要作用。2007年夏季,第234~273天波弗特海域一直被高压系统控制,波弗特涡旋加强,使得波弗特海域海冰聚集在北极中央区;顺时针的风场促使海冰向格陵兰岛和加拿大北极群岛以北聚合。2012年,白令海峡和楚科奇海域处于低压和高压系统的交界处,盛行偏北风,海冰从北极东部往西部输运,加拿大海盆的多年海冰因离岸运动而辐散,向楚科奇海域的海冰输运增加,受太平洋入流暖水影响,移入此区域的海冰加速融化,从而加剧海冰的减少。  相似文献   

10.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

11.
Information on the Arctic sea ice climate indicators is crucial to business strategic planning and climate monitoring. Data on the evolvement of the Arctic sea ice and decadal trends of phenology factors during melt season are necessary for climate prediction under global warming. Previous studies on Arctic sea ice phenology did not involve melt ponds that dramatically lower the ice surface albedo and tremendously affect the process of sea ice surface melt. Temporal means and trends of the Arctic sea ice phenology from 1982 to 2017 were examined based on satellite-derived sea ice concentration and albedo measurements. Moreover, the timing of ice ponding and two periods corresponding to it were newly proposed as key stages in the melt season. Therefore, four timings, i.e., date of snow and ice surface melt onset (MO), date of pond onset (PO), date of sea ice opening (DOO), and date of sea ice retreat (DOR); and three durations, i.e., melt pond formation period (MPFP, i.e., MO–PO), melt pond extension period (MPEP, i.e., PO–DOR), and seasonal loss of ice period (SLIP, i.e., DOO–DOR), were used. PO ranged from late April in the peripheral seas to late June in the central Arctic Ocean in Bootstrap results, whereas the pan-Arctic was observed nearly 4 days later in NASA Team results. Significant negative trends were presented in the MPEP in the Hudson Bay, the Baffin Bay, the Greenland Sea, the Kara and Barents seas in both results, indicating that the Arctic sea ice undergoes a quick transition from ice to open water, thereby extending the melt season year to year. The high correlation coefficient between MO and PO, MPFP illustrated that MO predominates the process of pond formation.  相似文献   

12.
北极海冰冰盖自20世纪以来经历了前所未有的缩减,这使得北极海冰异常对大气环流的反馈作用日益显现。尽管目前的气候模式模拟北极海冰均为减少的趋势,但各模式间仍然存在较大的分散性。为了评估模式对于北极海冰变化及其气候效应的模拟能力,我们将海冰线性趋势和年际异常两者结合起来构造了一种合理的衡量指标。我们还强调巴伦支与卡拉海的重要性,因为前人研究证明此区域海冰异常是近年来影响大尺度大气环流变异的关键因子。根据我们设定的标准,CMIP5模式对海冰的模拟可被归为三种类型。这三组多模式集合平均之间存在巨大的差异,验证了这种分组方法的合理性。此外,我们还进一步探讨了造成模式海冰模拟能力差别的潜在物理因子。结果表明模式所采用的臭氧资料集对海冰模拟能力有显著的影响。  相似文献   

13.
An ecological model to calculate phytoplankton development and microbial loop dynamics in the marginal ice zone of the antarctic ecosystem has been established on the basis of physical and biological (phyto- and bacterioplankton biomass and activity and counting of two classes of heterotrophic nanoplankton) measurements carried out in the marginal ice zone of the Scotia-Weddell Sea sector of the Southern Ocean during sea ice retreat 1988 (EPOS 1 and 2 expeditions). Application of this model at latitudes where sea ice retreat occurs and in adjacent open sea and permanently ice-covered areas demonstrated that the marginal ice zone is a region of enhanced primary and bacterioplankton production. Combining the results of the phyto- and bacterioplankton models allowed the quantitative estimate of the carbon fluxes through the lower level of the planktonic food web of the Weddell Sea marginal ice zone during the sea ice retreat period. The resulting carbon budget revealed the quantitative importance of microbial and micrograzing processes in the pathways of net primary production, 71% of this latter being assimilated in the microbial food web. However, total net microbial food web secondary production contributed 28% of‘marginal ice zone produced’ food resources available to krill and other Zooplankton.  相似文献   

14.
Arctic sea ice cover has decreased dramatically over the last three decades. This study quanti?es the sea ice concentration(SIC) trends in the Arctic Ocean over the period of 1979–2016 and analyzes their spatial and temporal variations. During each month the SIC trends are negative over the Arctic Ocean, wherein the largest(smallest) rate of decline found in September(March) is-0.48%/a(-0.10%/a).The summer(-0.42%/a) and autumn(-0.31%/a) seasons show faster decrease rates than those of winter(-0.12%/a) and spring(-0.20%/a) seasons. Regional variability is large in the annual SIC trend. The largest SIC trends are observed for the Kara(-0.60%/a) and Barents Seas(-0.54%/a), followed by the Chukchi Sea(-0.48%/a), East Siberian Sea(-0.43%/a), Laptev Sea(-0.38%/a), and Beaufort Sea(-0.36%/a). The annual SIC trend for the whole Arctic Ocean is-0.26%/a over the same period. Furthermore, the in?uences and feedbacks between the SIC and three climate indexes and three climatic parameters, including the Arctic Oscillation(AO), North Atlantic Oscillation(NAO), Dipole anomaly(DA), sea surface temperature(SST), surface air temperature(SAT), and surface wind(SW), are investigated. Statistically, sea ice provides memory for the Arctic climate system so that changes in SIC driven by the climate indices(AO, NAO and DA) can be felt during the ensuing seasons. Positive SST trends can cause greater SIC reductions, which is observed in the Greenland and Barents Seas during the autumn and winter. In contrast, the removal of sea ice(i.e., loss of the insulating layer) likely contributes to a colder sea surface(i.e., decreased SST), as is observed in northern Barents Sea. Decreasing SIC trends can lead to an in-phase enhancement of SAT, while SAT variations seem to have a lagged in?uence on SIC trends. SW plays an important role in the modulating SIC trends in two ways: by transporting moist and warm air that melts sea ice in peripheral seas(typically evident inthe Barents Sea) and by exporting sea ice out of the Arctic Ocean via passages into the Greenland and Barents Seas, including the Fram Strait, the passage between Svalbard and Franz Josef Land(S-FJL),and the passage between Franz Josef Land and Severnaya Zemlya(FJL-SZ).  相似文献   

15.
南极海冰和陆架冰的变化特征   总被引:8,自引:1,他引:8       下载免费PDF全文
利用美国冰中心和雪冰中心提供的海冰资料和我国南极考察现场的海冰观测资料,对南极海冰的长期变化进行了研究.研究表明20世纪70年代后期是多冰期;80年代是少冰期;90年代南极海冰属于上升趋势,后期偏多,区域性变化差别大,东南极海冰偏多,西南极海冰即南极半岛两侧尤其是威德尔海区和别林斯高晋海的冰明显偏少.东南极和西南极海冰的变化趋势总是反相的.90年代后期普里兹湾的海冰明显偏多,南极大陆陆架冰外缘线总体没有明显的收缩,有崩解也有再生的自然变化现象.西南极威德尔海的龙尼冰架和罗斯海冰架东部崩解和收缩趋势明显,东南极的冰架也有崩解和收缩,但没有西南极明显.陆架冰崩解向海洋输送的冰山对全球海平面升高有一定的影响.目前南极冰盖断裂崩解形成的冰山,向海洋输入的水量可使全球海平面上升约14mm.南极海冰没有随着全球气候温暖化而明显减少,而是按照东南极和西南极反相的变化规律进行周期性的变化、调整和制约.  相似文献   

16.
The melt onset dates(MOD) over Arctic sea ice plays an important role in the seasonal cycle of sea ice surface properties, which impacts Arctic surface solar radiation absorbed by the ice-ocean system. Monitoring interannual variations in MOD is valuable for understanding climate change. In this study, we investigated the spatio-temporal variability of MOD over Arctic sea ice and 14 Arctic sub-regions in the period of 1979 to 2017 from passive microwave satellite data. A set of mathematical and ...  相似文献   

17.
The sea ice conditions in the Kara Sea have important impacts on Arctic shipping, oil and gas production, and marine environmental changes. In this study, sea ice coverage (CR) less than 30% is considered as open water, its onset and end dates are defined as Topen and Tclose, respectively. The sea ice melt onset (Tmelt) is defined as the date when ice-sea freshwater flux initially changes from ice into the ocean. Satellite-based sea ice concentration (SIC) from 1989 to 2019 shows a negative correlation between Topen and Tclose (r = –0.77, p < 0.01) in the Kara Sea. This phenomenon is also obtained through analyzing the hindcast simulation from 1994 to 2015 by a coupled ocean and sea-ice model (NAPA1/4). The model results reveal that thermodynamics dominate the sea ice variations, and ice basal melt is greater than the ice surface melt. Heat budget estimation suggests that the heat flux is significant correlated with Topen (r = –0.95, p < 0.01) during the melt period (the duration of multi-year averaged Tmelt to Topen) influenced by the sea ice conditions. Additionally, this heat flux is also suggested to dominate the interannual variation of the heat input during the whole heat absorption process (r = 0.81, p < 0.01). The more heat input during this process leads to later Tclose (r = 0.77, p < 0.01). This is the physical basis of the negative correlation between Topen and Tclose. Therefore, the duration of open water can be predicted by Topen and thence support earlier planning of marine activities.  相似文献   

18.
巴伦支海-喀拉海是北冰洋最大的边缘海,能够对环境变化做出快速的响应和反馈,是全球气候变化最为敏感的区域之一,其古海洋环境演变及海冰变化研究是全球气候变化研究的重要组成部分。末次盛冰期以来,该区域的古海洋环境受到太阳辐射、海流强度、海平面变化、温盐环流和河流输入等因素影响发生了一系列不同尺度的波动。巴伦支海受到北大西洋暖水和极地冷水两大水团相互作用的影响,在水团交界处 (极锋) 由于不同水团性质的差异,导致其海水温度、盐度及海冰发生剧烈变化。而喀拉海则受到叶尼塞河和鄂毕河大量淡水输入影响,海流系统较巴伦支海相对复杂,沉积物主要来源于河流输入的陆源物质,并可以通过磁化率的分析明确区分两条河流的陆源物质。由于受到冷水和暖水的相互作用,巴伦支海-喀拉海海冰变化迅速,并且在全新世中晚期存在 0.4 ka 和 0.95 ka 的变化周期,但海冰变化的影响因素并不是单一的,而是气候系统内部各因子相互作用的结果。目前古海冰重建研究工作主要为定性研究,定量研究相对较少,所选用的重建指标也相对单一,另外存在年代框架差、分辨率低等不足。本文以巴伦支海和喀拉海为中心,总结了其快速气候突变事件、古温度盐度、海平面及海冰的变化,对影响因素进行了探讨,并通过分析末次盛冰期以来古海洋环境研究的不足,提出了相应的展望。  相似文献   

19.
北极各海域海冰覆盖范围的变化特征   总被引:2,自引:1,他引:1  
Sea ice in the Arctic has been reducing rapidly in the past half century due to global warming.This study analyzes the variations of sea ice extent in the entire Arctic Ocean and its sub regions.The results indicate that sea ice extent reduction during 1979–2013 is most significant in summer,following by that in autumn,winter and spring.In years with rich sea ice,sea ice extent anomaly with seasonal cycle removed changes with a period of 4–6 years.The year of 2003–2006 is the ice-rich period with diverse regional difference in this century.In years with poor sea ice,sea ice margin retreats further north in the Arctic.Sea ice in the Fram Strait changes in an opposite way to that in the entire Arctic.Sea ice coverage index in melting-freezing period is an critical indicator for sea ice changes,which shows an coincident change in the Arctic and sub regions.Since 2002,Region C2 in north of the Pacific sector contributes most to sea ice changes in the central Aarctic,followed by C1 and C3.Sea ice changes in different regions show three relationships.The correlation coefficient between sea ice coverage index of the Chukchi Sea and that of the East Siberian Sea is high,suggesting good consistency of ice variation.In the Atlantic sector,sea ice changes are coincided with each other between the Kara Sea and the Barents Sea as a result of warm inflow into the Kara Sea from the Barents Sea.Sea ice changes in the central Arctic are affected by surrounding seas.  相似文献   

20.
By using the Arctic runoff data from R-ArcticNET V4.0 and ArcticRIMS, trends of four major rivers flowing into the Arctic Ocean, whose climate factor plays an important role in determining the variability of the Arctic runoff, are investigated. The results show that for the past 30 years, the trend of the Arctic runoff is seasonally dependent. There is a significant trend in spring and winter and a significant decreasing trend in summer, leading to the reduced seasonal cycle. In spring, surface air temperature is the dominant factor influencing the four rivers. In summer, precipitation is the most important factor for Lena and Mackenzie, while snow cover is the most important factor for Yenisei and Ob. For Mackenzie, atmospheric circulation does play an important role for all the seasons, which is not the case for the Eurasian rivers. The authors further discuss the relationships between the Arctic runoff and sea ice. Significant negative correlation is found at the mouth of the rivers into the Arctic Ocean in spring, while significant positive correlation is observed just at the north of the mouths of the rivers into the Arctic in summer. In addition, each river has different relationship with sea ice in the eastern Greenland Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号