首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
河控型河口盐度混合和层化是控制悬沙输移扩散的重要动力机制。以珠江磨刀门河口为研究对象,基于2017年洪季三船同步大、小潮水文泥沙观测数据,分析河控型河口水体盐度层化结构的时空变化对悬沙分布的影响机制。结果表明:受径潮动力耦合时空变化影响,河口盐度垂向分布表现出时空差异,即受径流主导的M1站(挂锭角),河口盐度在涨落潮周期内垂向混合均匀,受径潮控制的M2站(口门)在整个潮周期内盐度层化结构明显,口门外侧的M3站,潮动力作用较强,盐度垂向分布随涨落潮变化而变化;悬沙空间分布与盐度分布关系密切,盐度混合均匀利于悬沙垂向均匀分布,而盐度层化则使悬沙倾向于滞留在底层水体中,且在盐度层结界面之下出现高悬沙浓度,悬沙浓度垂向分布曲线呈L字型或抛线型,纵向上表现为高浓度悬沙团抑制在盐水楔前端,盐度层化对悬沙的捕集效应明显。通过对比水体标准化分层系数与水流垂向扩散强度系数发现,两者呈现负相关关系,即标准化分层系数愈大,垂向扩散强度愈小,表明水体层化抑制悬沙垂向扩散强度,而且水体层化程度越高,悬沙垂向扩散抑制程度越大,进而促进了河口水体盐度层化对悬沙捕集作用。本研究有助于揭示河口细颗粒泥沙运动机制及河口拦门沙演变机制,并为磨刀门河口拦门沙治理提供科学依据。  相似文献   

2.
基于椒江河口大、小潮期间水位、流速、盐度和悬沙浓度观测数据,研究了椒江河口主潮汐通道的水动力、盐度和悬沙浓度的时空变化特征,解释了高浊度强潮作用下的层化物理机制。椒江河口大潮期悬沙浓度和盐度均大于小潮期,主潮汐通道区域落潮期悬沙浓度大于涨潮期;盐度随潮变化,盐水锋面出现在S2测站,锋面附近出现最大浑浊带;自陆向海,悬沙浓度递减,盐度递增;随水深增加,悬沙浓度与盐度递增。Richardson数与混合参数显示,盐度和悬沙引起的层化现象,是随着潮汐的变化而变化,涨潮时的层化均强于落潮,小潮时的层化持续时间最长,区域更广。混合参数随潮周期变化,大潮期高于临界值1.0,小潮期低于临界值1.0。小潮期水体层化强于大潮期;潮汐应变项是影响势能差异变化率的重要因素;落潮期间层化向混合状态转化,涨潮相反。  相似文献   

3.
对鸭绿江河口1994和1996两年两个站位共4个潮周期的数据进行了分析,通过流速对数剖面公式计算了边界层参数,并对各个潮周期内的边界层参数的变化规律进行了分析,同时也对悬沙输送可能对垂向流速结构以及边界层参数造成的影响进行了探讨,分析结果表明,正是由于悬沙分布的影响,打破了原有的温度、盐度、水体密度在水层间的分布格局,改变了原有水体的纵向密度梯度,除少数时刻对应的水体Rf值减小之外,水体的Rf值被普遍提高,并且分层稳定。应用改造后的Von karmen-Prandtl流速对数分布剖面公式,重新对原先公式计算的边界层参数进行了修正,修正后结果表明,u*、C100和τ分别比通过原公式的计算值平均减少了21%、56%和36%,而由于水体悬沙则使τ比在没有悬沙存在的情况下的τ值平均减少了22%。  相似文献   

4.
研究海平面上升对河口的影响情况有助于了解输运过程的变化,基于21世纪海平面上升预测研究(陈长霖,2012;张吉,2014),本文选取珠江河口这一径优型与潮优型并存的河口为研究区域,利用数值模拟的方法,研究其在未来海平面上升后可能出现的响应。结果表明,河口的平均盐度、咸潮上溯距离和层化强度都将随着海平面的上升而增加,这些因素的变化有着明显的季节性。伶仃洋平均盐度在4月和10月增加更多;伶仃洋枯水期咸潮上溯距离的增量大于丰水期,磨刀门则相反;伶仃洋丰水期层化强度及其增量都要大于枯水期。海平面上升后的输运过程响应结果显示:(1) 垂向输运时间将增加,虽然海平面上升带来的潮差潮流的增强将加强垂向混合,但是层化的加强会削弱垂向交换。垂向输运时间的增加是由于层化的加强,层化加强抑制了潮汐变化带来的影响,表层水更难交换到底层; (2) 南北向河口环流将加强,表层余流向海加强,底层余流向陆加强,南北向余流整体向海减小。造成这些现象的主要原因是海平面上升后水深增加带来的河道比降的减小和压力梯度力的改变。  相似文献   

5.
悬沙浓度是淤泥质海岸重要的环境指标。为探讨潮滩悬沙浓度和悬沙输运对风暴事件的响应过程及其动力机制,于2014年9月"凤凰"台风过境前、中、后在长江三角洲南汇潮滩进行了现场观测,获得同步高分辨率的水深、波高、近底流速和浊度剖面时间序列(9个潮周期)。结果表明,风暴中平均和最大波高、波-流联合底床剪切应力、悬沙浓度和悬沙输运率可比平静天气高数倍;风暴期间高潮位低流速阶段悬沙沉降导致近底发育数十厘米厚的浮泥层(悬沙浓度大于10 g/L)。研究认为风暴事件中淤泥质海岸悬沙浓度和悬沙输运的剧烈变化其根本动力机制是风暴把巨大能量传递给近岸水体,进而显著增大波-流联合底床剪切应力,导致细颗粒泥沙再悬浮。  相似文献   

6.
根据2011年5月31日至6月3日在长江口南槽口门附近海域投放三角架观测系统获取的沉积动力观测数据以及现场采集的水样和底质样品,进行底部边界层参数、悬沙粒度及悬沙组分分析,以探讨研究区近底部边界层特征和沉积物再悬浮过程。结果表明,研究区海域的悬沙以粉砂组分为主,潮周期内近底部流速与相应层位的悬沙浓度变化呈正相关,存在显著的再悬浮作用。分析发现,随着水体中悬沙砂组分的增加,再悬浮通量随之显著增加;砂组分减小,则再悬浮通量亦减小。因此,悬沙砂组分是对再悬浮过程响应的敏感组分,在一定程度上可指示和"示踪"再悬浮效应。  相似文献   

7.
强人类活动(如航道疏浚)和自然气候变化(如海平面上升)对近岸河口环境不同影响的辨识是目前河口海岸学研究的热点和难点问题。在地形概化和动力简化条件下, 解析模型能够快速辨识强人类活动和自然气候变化对河口环境的影响, 它是探讨河口动力过程对外界干扰的响应机制的重要工具。本文基于前人对葡萄牙Guadiana河口不同分潮之间非线性相互作用的研究, 采用一维水动力解析模型探讨河口不同分潮潮波传播过程对水深变化(模拟航道疏浚和河道淤积过程)的响应机制。研究结果表明: 平均水深$\overline{h}$的变化影响无量纲河口地形参数γ和摩擦参数χ, 进一步影响河口动力参数包括潮波振幅参数ζ、流速振幅参数μ、波速参数λ、潮波振幅增大/衰减率参数δ以及流速与水位之间的相位差?等; 平均水深变化对河口中下游段(x=0~60km)的潮汐动力影响较大, 而对河口上游段(x=60~78km)影响较弱; 主要半日分潮(M2、S2、N2)对水深变化的响应略大于全日分潮(K1、O1); 航道疏浚幅度小于2m时, 对河口潮汐动力格局影响不大, 而当疏浚幅度大于2m时, 将对河口潮汐动力格局及水环境(如盐水入侵等)产生较大影响; 河道淤积将导致潮汐动力减弱, 流速振幅、潮波振幅及传播速度减小, 流速和水位之间的相位差也减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号