首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
研究溶解有机碳(DOC)在海水和黄河水所组成的混合水中的迁移转化行为,结果表明,海水和已过滤黄河水混合时,DOC呈近似的保守性;海水与未过滤的黄河水混合时,DOC呈明显的非保守性。通过研究沉积物对DOC的解吸过程,发现沉积物在盐水中能解吸出DOC,随着盐度的增大,其解吸量也迅速增大。因此可以认为,DOC在河口区的非保守行为是DOC的絮凝和颗粒物的解吸共同作用的结果。  相似文献   

2.
Estuaries act as filters for land derived material reducing the river input to the coastal zone. Silicon (Si) removal from freshwater which is tightly linked to the growth of diatoms was studied in the estuarine mixing zone where the mixing of freshwater and seawater results in a salinity gradient. Three planktonic diatom species with different origin and salinity tolerance were grown in an artificial salinity gradient. Salinity stress and nutrient depletion led to a specific succession of the three diatoms along the salinity gradient. When available light was increased, diatoms reached higher biomass and the Si removal from water column was more efficient along the mixing. From this experiment, a conceptual model of Si transformations and removal from freshwater was build and applied to an idealized stratified estuary. Sensitivity analysis with varying initial conditions and parameter values pointed transit time of freshwater in the estuary, freshwater and seawater mixing rate and river turbidity as important interactive factors influencing Si removal from freshwater. Other factors like the total amount and the salinity tolerance of diatoms in the upstream river were shown to significantly affect riverine Si removal from the surface layer of an estuary. Finally it appears that Si removal from freshwater in estuarine mixing zones proceeds in two ways: a first rapid death and sedimentation of planktonic stenohaline diatoms imported from the river and second, the growth and subsequent settling of planktonic euryhaline diatoms of either freshwater or marine origin.  相似文献   

3.
The southern portion of the Brazilian coast is dominated by coastal lagoons formed by sandy barrier spits with small inlets. This coastal configuration is a barrier to the surface flow of freshwater to the sea; thus, we suspect that a significant amount of freshwater flows through the permeable sands, beneath the barrier spits, where it mixes with seawater. We excavated an 18-m-deep well into the barrier spit which separates the Patos Lagoon from the South Atlantic. Using this well, we were able to sample interstitial waters from discrete layers, at 1-m intervals, which were analyzed for salinity, temperature, pH, nutrients (ammonium, nitrate, phosphate, and silicate), uranium, molybdenum, and barium. Similar analyses were made on surface water samples from the Patos Lagoon estuarine mixing zone.Results of well samples show a continuous increase in salinity with depth reaching 18 at the bottom. Ammonium and silicate are high, generally around 100 and 100–150 μM, respectively, throughout the subterranean profile. Phosphate shows a distinct maximum at about 6 m (ca. 25 μM), and nitrate is generally low in all well samples. Uranium and molybdenum exhibit a minimum in the well profile at about the same location where barium exhibits a maximum (greater than 2 μM). When results are compared to the surface lagoon–seawater mixing data, ammonium, phosphate, silicate, and barium in well samples of similar salinity show considerable enrichment, while a comparison of uranium and molybdenum data indicates significant depletion of these metals in most well samples.Based on these and other data, we deduce that the following processes are active: products of remineralization of organic detritus accumulated in lagoon sediments are advected through permeable sediments to the oceans; dissolution of biogenic solids and/or solid silicates mobilizes silicate; phosphate, uranium, and molybdenum are mobilized from phosphate-rich sediment layers; sulfate reducers remove uranium and perhaps molybdenum from solution throughout most of the well profile; barium is desorbed from solids in the subterranean mixing zone. These results demonstrate that freshwater discharged to the ocean through permeable sediments may have a significantly different composition than that discharged at the surface.  相似文献   

4.
南海近海海水中放射性总α、总β的研究   总被引:1,自引:0,他引:1  
刘怀 《海洋科学》1987,11(6):32-34
本文对南海近海海水中的放射性总α、总β的含量和分布进行了研究。结果表明:南海近海海水中的总α、总β含量,略高于东海,稍低于渤海。南海近海海域的主要放射性物质是铀、钍天然放射系和~(40)K。  相似文献   

5.
腐殖质(humic substances,简称HS)是地表普遍存在的天然有机物,对海洋中重要的微量营养元素-铁(Fe)的分布及生物地球化学循环具有重要的影响作用。本文对腐殖质的来源、分布及对海水中溶解态铁的迁移转化的影响做了总结,特别论述了其在河口及沿岸水域的行为。大量研究表明河口、沿岸及开放海水中溶解态铁分布的变化可以用腐殖质的浓度及其铁结合能力的变化来解释。腐殖质的络合作用不仅能够阻止溶解态铁(DFe)在河口、沿岸等水域被去除,而且能够通过洋流将DFe迁移至外海及大洋区域,此外还能增加铁的溶解度及对海水中浮游植物的生物可利用性,并且促进铁的氧化还原循环。研究还发现两者之间的络合强度受到盐度、pH等理化因素的影响。盐度是影响HS与DFe配合能力的重要影响因素,盐度增加,导致HS中可以与Fe配合的位点数量降低,配合总量呈现指数降低,而pH的增加可以增加HS与DFe的配合量。另外HS还能影响海水中DFe的氧化还原,并以此影响浮游植物对DFe的吸收利用。因此腐殖质对溶解态铁的有机络合作用是影响其海洋生物地球化学循环的一个重要参数,对进一步研究海水中腐殖质的浓度和分布具有重要的意义。  相似文献   

6.
Behaviour of industrially added boron in the well mixed Ambika river estuary of South Gujarat, India has been studied along with that of calcium and magnesium. The ratios of Ca : Cl and Mg : Cl at varying chlorinities were always within the normal ranges found in river water at one end and seawater at the other end. B : Cl exceeded the river water end limit at the ebb tide at an upstream station. Percentage addition or removal of boron, calcium and magnesium was calculated using the concept of the theoretical dilution line. The external input raised the boron concentration by 263% in the vicinity of the industrial discharge. A correlation coefficient of ?0·82 between chlorinity and percentage addition or removal of boron supports the theory of boron incorporation in sediments in amounts proportional to salinity. Inverse relationship between percentage addition or removal of boron and suspended solids was observed. Behaviour of calcium and magnesium was in line with the replacement of Ca2+ ions occupying the majority of ion-exchange sites in riverine clays by Mg2+, Na+ and K+ during their first encounter with seawater.  相似文献   

7.
潘德炉  刘琼  白雁 《海洋学报》2012,34(4):1-11
目前,溶解有机碳(DOC)遥感反演研究主要集中在河口及陆源影响较大的边缘海区,大多数是利用DOC与有色溶解有机物(CDOM)或DOC与盐度的经验关系获取。为了较好的理解DOC的遥感反演机理,收集了全球主要大河(流量排名前25中16条)及边缘海DOC与CDOM浓度与保守性分布状况,发现大多数河口CDOM呈现保守性分布,DOC呈现非保守性分布。基于DOC与CDOM保守性行为的主要影响因素分析以及研究海区的生物地球化学特征,论述了DOC遥感反演算法的研究进展,提出了DOC遥感反演需要考虑DOC受不同主要控制因素(如保守混合与生物作用等)的影响,并对这些控制因素进行量化。  相似文献   

8.
目前,溶解有机碳(DOC)遥感反演研究主要集中在河口及陆源影响较大的边缘海区,大多数是利用DOC与有色溶解有机物(CDOM)或DOC与盐度的经验关系获取。为了较好的理解DOC的遥感反演机理,收集了全球主要大河(流量排名前25中16条)及边缘海DOC与CDOM浓度与保守性分布状况,发现大多数河口CDOM呈现保守性分布,DOC呈现非保守性分布。基于DOC与CDOM保守性行为的主要影响因素分析以及研究海区的生物地球化学特征,论述了DOC遥感反演算法的研究进展,提出了DOC遥感反演需要考虑DOC受不同主要控制因素(如保守混合与生物作用等)的影响,并对这些控制因素进行量化。  相似文献   

9.
Pore water, sediment and microbiological samples were collected from two areas in the Gulf of Maine. The Jeffreys Basin sediments had low organic carbon and low reduced sulfur values; the quality of their pore water indicated that nitrification and subsequent denitrification were major biogeochemical processes occurring in the upper 115 cm. Sediments from the Wilkinson Basin had higher values of organic carbon and higher reduced sulfur and total plate-count bacteria. These data indicate that the major biogeochemical processes occurring in these sediments are denitrification followed by sulfate reduction. The differences in the rates of these microbially mediated processes can be related to differences in sedimentation rates at the two sites.  相似文献   

10.
海底地下水排放对典型红树林蓝碳收支的影响   总被引:1,自引:0,他引:1  
海底地下水排放(Submarine Groundwater Discharge,SGD)是陆海相互作用的重要表现形式之一,其携带的物质对近岸海域生源要素的收支有重要影响。本文利用222Rn示踪技术估算了我国典型红树林海湾—广西珍珠湾在2019年枯季(1月)SGD携带的碳通量。调查发现,地下水中222Rn活度、溶解无机碳(DIC)和溶解有机碳(DOC)的平均浓度均高于河水和湾内表层海水。利用222Rn质量平衡模型估算得到珍珠湾SGD速率为(0.36±0.36) m/d,SGD输入到珍珠湾的DIC和DOC通量分别为(2.41±2.63)×107 mol/d和(1.96±2.20)×106 mol/d。珍珠湾溶解碳的源汇收支表明,SGD携带的DIC和DOC分别占珍珠湾总DIC和总DOC来源的91%和89%。因此,SGD携带的DIC和DOC是珍珠湾DIC和DOC的主要来源,是海岸带蓝碳收支和生物地球化学循环过程中的重要组成。  相似文献   

11.
Methylmercury (MeHg) concentration and production rates were studied in bottom sediments along the mainstem of Chesapeake Bay and on the adjoining continental shelf and slope. Our objectives were to 1) observe spatial and temporal changes in total mercury (HgT) and MeHg concentrations in the mid-Atlantic coastal region, 2) investigate biogeochemical factors that affect MeHg production, and 3) examine the potential of these sediments as sources of MeHg to coastal and open waters. Estuarine, shelf and slope sediments contained on average 0.5 to 1.5% Hg as MeHg (% MeHg), which increased significantly with salinity across our study site, with weak seasonal trends. Methylation rate constants (kmeth), estimated using enriched stable mercury isotope spikes to intact cores, showed a similar, but weaker, salinity trend, but strong seasonality, and was highly correlated with % MeHg. Together, these patterns suggest that some fraction of MeHg is preserved thru seasons, as found by others [Orihel, D.M., Paterson, M.J., Blanchfield, P.J., Bodaly, R.A., Gilmour, C.C., Hintelmann, H., 2008. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Environmental Pollution 154, 77] Similar to other ecosystems, methylation was most favored in sediment depth horizons where sulfate was available, but sulfide concentrations were low (between 0.1 and 10 μM). MeHg production was maximal at the sediment surface in the organic sediments of the upper and mid Bay where oxygen penetration was small, but was found at increasingly deeper depths, and across a wider vertical range, as salinity increased, where oxygen penetration was deeper. Vertical trends in MeHg production mirrored the deeper, vertically expanded redox boundary layers in these offshore sediments. The organic content of the sediments had a strong impact on the sediment:water partitioning of Hg, and therefore, on methylation rates. However, the HgT distribution coefficient (KD) normalized to organic matter varied by more than an order of magnitude across the study area, suggesting an important role of organic matter quality in Hg sequestration. We hypothesize that the lower sulfur content organic matter of shelf and slope sediments has a lower binding capacity for Hg resulting in higher MeHg production, relative to sediments in the estuary. Substantially higher MeHg concentrations in pore water relative to the water column indicate all sites are sources of MeHg to the water column throughout the seasons studied. Calculated diffusional fluxes for MeHg averaged  1 pmol m− 2 day− 1. It is likely that the total MeHg flux in sediments of the lower Bay and continental margin are significantly higher than their estimated diffusive fluxes due to enhanced MeHg mobilization by biological and/or physical processes. Our flux estimates across the full salinity gradient of Chesapeake Bay and its adjacent slope and shelf strongly suggest that the flux from coastal sediments is of the same order as other sources and contributes substantially to the coastal MeHg budget.  相似文献   

12.
We have elucidated the seasonal and spatial variation in the potential denitrifying activity in estuarine and coastal lagoonal sediments in Lakes Shinji and Nakaumi, Japan. The denitrifying activity increased from summer through autumn and was positively correlated with the temperature of the overlying water at all sites except one, where the bottom was always more reductive than at the other sites and there was no NO3 as a substrate for denitrification from spring to autumn. Moreover, the relationship between the denitrifying activity and the distance from the sea showed different trends in estuarine and lagoonal sediments. These spatial differences indicate that different factors regulate the denitrification in estuarine and lagoonal sediments. Denitrifying activity in estuarine sediment was regulated by the discharge of freshwater containing NO3 or organic matter, while in the lagoonal sediments the occurrence of nitrification via the intrusion of oxic seawater into the reductive sediment appears to be a key requirement for the process of denitrification. Therefore, the denitrifying activity in the lagoonal sediment appears to be greater near the sea. Water intrusion is one of the key factors controlling denitrification in coastal marine ecosystems by affecting the supply of substrate available for denitrification.  相似文献   

13.
The contents of biogenic elements in China marginal sea sediments are related to their grain sizes, river transport, et al. In general, the finer the grain size is, the higher the contents of organic matter and OC, N, P are, the lower the contents of S and Si are. The biogeochemical environments of sediments are related to Eh, pH, temperature content of OC,Fe3 /Fe2 radio, water dynamics condition, grain size of sediment, S system in sediment interstitial waters, et al., and they influence the early diageneses and cycle of biogenic elements in sediments. In most regions of China marginal sea, the flux directions of S2-, HS-,3- NH4 H4SiO4, PO4 , across the sediment-water interface are from sediment to the overlying seawater, the flux directions of SO42-, HCO3-, NO3-, NO2- across the sediment-water interface are from the overlying seawater to sediment. The irrigation of living things is important in the cycle of the biogenic elements across sediment-water interfaces.  相似文献   

14.
Denitrification in Qi'ao Island coastal zone, the Zhujiang Estuary in China   总被引:1,自引:0,他引:1  
Samples of sediments and the overlying water were collected in the Qi'ao Island coastal zone, the Zhujiang (Pearl River) Estuary (ZE). Denitrification rates, sediment oxygen demand (SOD) , and fluxes of inorganic nitrogen compounds were investigated with N2 flux method, using a self-designed continuous flow through and auto-sampling system. The results indicate that the denitrification rates varied between 222 and 908 μmol/(m2·h) with an average of 499 μmol/(m2·h). During incubation, the sediments absorbed dissolved oxygen in the overlying water with SOD ranging from 300 to 2 363 μmol/(m2·h). The denitrification rates were highly correlated with the SOD (r2 =0.77) regardless of the NO3- + NO2- concentrations in the overlying water, organ- ic carbon contents in sediments and water temperature, suggesting that the SOD was probably the main environ-mental factor controlling the denitrification in the Qi'ao Island coastal zone. There was a net flux of NO3- + NO2-into the sediments from the overlying water. The NH4+ flux from sediments into water as the result of mineraliza-tion was between 12. 3 and 210. 3 μmol/(m2·h) ,which seems limited by both organic carbon content in sedi-ment and dissolved oxygen concentration in the overlying water.  相似文献   

15.
The optimum multiparameter(OMP) method was often used to determine the percentages of water masses based on temperature, salinity and other parameters, like nutrient or dissolved oxygen(DO). There are a number of water masses in the East China Sea(ECS), a marginal sea of the western Pacific Ocean. However, it is difficult to clarify the proportion of water masses using traditional parameters, such as temperature, salinity, nutrient or DO because of the occurring of intensive biogeochemical processes in the near shore and shelf areas. Here, we reported the use of ~(234)U/~(238)Uactivity ratio embedded in the OMP method. The results indicate that seawater in the northern ECS mainly consisted of the estuarine water of Changjiang River(CEW), Kuroshio water(KW), and Yellow Sea Coastal Current(YSCC). In March 2017, the CEW only influenced the offshore waters shallower than30 m; the KW affected the east edge and the YSCC contributed more than 75% in the northern ECS.  相似文献   

16.
钦州湾河流沉积物中镭的解吸行为   总被引:1,自引:0,他引:1  
放射性镭同位素在海底地下水排放(SGD)等海洋物质变化过程的研究中具有优良的示踪作用,估算SGD通量时需要计算河流悬浮颗粒物的解吸通量。因此,对河流沉积物/悬浮颗粒物中镭同位素解吸行为的研究不可或缺,而目前对于粒度较小范围内镭同位素的解吸特征及其机理的研究依然不足。本文选用钦州湾河流沉积物,通过室内实验探究粒度和盐度对沉积物中镭同位素解吸行为的影响。结果表明,在沉积物平均粒径0.9~136.0 μm范围内,随着粒径增大,沉积物中镭同位素在海水(盐度为33.9)中解吸活度逐渐减小,且变化趋势也逐渐变缓,平均粒径大于43.7 μm后,解吸量几乎不变;在海水盐度4.9~33.9范围内,随着盐度增大,沉积物中镭同位素解吸活度逐渐增大,盐度大于24.9后,解吸量趋于不变。本文创新性地建立了沉积物表面分形结构的镭解吸理论模型,拟合得到钦州湾河流沉积物表面最大可交换态224Ra、226Ra和228Ra活度分别为1.13 dpm/g、0.17 dpm/g和0.85 dpm/g,以干重计;沉积物中224Ra、226Ra和228Ra最大解吸比分别为30%、7%和18%。钦州湾河流沉积物颗粒表面最大可交换态224Ra和226Ra活度分别处于全球中等水平和较低水平,而其最大解吸比分别处于全球较高水平和较低水平。本研究结果有助于更好地理解镭同位素的解吸行为,以帮助更准确地估算SGD通量。  相似文献   

17.
During the first year of the Northeast Pacific GLOBEC program we examined the spatial distributions of dissolved and particulate organic carbon and nitrogen in the surface waters off the Oregon and Washington coasts of North America. Eleven east–west transects were sampled from nearshore waters to 190 km offshore. Hydrographic data and the distribution of inorganic nutrients were used to characterize three distinct water sources: oligotrophic offshore water, the Columbia River plume, and the coastal upwelling region inshore of the California Current. Warm, high salinity offshore water had very low levels of inorganic nutrients, particulate organic carbon (POC) and dissolved organic carbon (DOC). Warm, low salinity water in the Columbia River plume was relatively low in nitrate, but showed a strong negative correlation between salinity and silicate. The river plume water had the highest levels of total organic carbon (TOC) (up to 180 μM) and DOC (up to 150 μM) observed anywhere in the sampling area. Cold, high salinity coastal waters had high nutrient levels, moderate to high levels of POC and particulate organic nitrogen (PON), and low to moderate levels of DOC and dissolved organic nitrogen (DON). Each of these regions has characteristic C:N ratios for particulate and dissolved organic material. The results are compared to concentrations and partitioning of particulate and dissolved organic carbon and nitrogen in other regions of the North Pacific and North Atlantic Oceans.  相似文献   

18.
By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO3?) concentrations (> 100 µM) from the Mississippi–Ohio–Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981– 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO3? concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m2 h? 1. The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (annamox) limits our understanding of nitrogen cycling in coastal Louisiana, particularly the role of respiratory and chemolithoautotrophic denitrification in areas undergoing wetland restoration.  相似文献   

19.
Spatial and seasonal variations of sulphate, dissolved organic carbon (DOC), nutrients and metabolic products were determined down to 5 m sediment depth in pore waters of intertidal flats located in NW Germany. The impact of sediment permeability, pore water flow, and organic matter supply on deep pore water biogeochemistry was evaluated. Low sediment permeability leads to an enrichment of remineralisation products in pore waters of clay-rich sediments. In permeable sandy sediments pore water biogeochemistry differs depending on whether tidal flat margins or central parts of the tidal flat are studied. Pore water flow in tidal flat margins increases organic matter input. Substrate availability and enhanced temperatures in summer stimulate sulphate reducers down to 3.5 m sediment depth. Sulphate, DOC, and nutrient concentrations exhibit seasonal variations in deep permeable sediments of the tidal flat margin. In contrast, seasonal variations are small in deep pore waters of central parts of the sand flat. This study shows for the first time that seasonal variations in pore water chemistry are not limited to surface sediments, but may be observed down to some metres depth in permeable tidal flat margin sediments. In such systems more organic matter seems to be remineralised than deduced from surface sediment studies.  相似文献   

20.
Ongoing climate change and anthropogenic activities are introducing stressors that affect the structure and function of coastal ecosystems. This paper focuses on the fluvial fluxes and estuarine transport of nutrients from a tropical river (Mahanadi River) in Northeastern India and compares select nutrient and water quality parameters between 1983 and 2008. This estuary acts as a perennial source of CO2 with a net annual flux to the atmosphere of about 135 tons. The non‐conservative fluxes showed a net annual removal of 650 and 140 tons of phosphorus and nitrogen from the water column, respectively. Negative biogeochemical feedbacks that decreased the availability of N and P in 2008 relative to 1983 levels indicate major changes in biogeochemical responses towards fluvial fluxes of nutrient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号