首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
近海岸区域平均海面高在大地测量学、物理海洋学以及地球物理学研究中具有非常重要的意义.受各种条件的制约和限制,目前卫星测高技术主要应用于深海区域,在近海区域尤其是海岸线附近区域的应用几乎为空白.本文根据ERS-1测高卫星回波波形特征,采用五参数线性模型,由最小二乘拟合方法,对近海区域尤其是靠近海岸线附近的ERS-1测高波形数据进行波形重构.比较波形重构前、后解算平均海面高,表明波形重构技术不仅明显改善了解算近海海面高的精度,而且增加了近海测高海平面的分辨率,并使卫星测高有效观测延伸至海岸线附近.随后,本文利用波形重构后海面高数据构造了近海多年平均海平面,并对我国近海海平面特征进行了初步分析.  相似文献   

2.
The global ionospheric total electron content maps (GIMs) provide integrated electron densities between the ground and the GPS satellite altitude (20,200 km). Satellite altimeter ionospheric delay corrections require integrated electron densities between the ground and altimeter satellite altitude. In the case of the Geosat Follow-On (GFO) spacecraft, flying at 800 km, we estimated that using GIM TEC data alone, up to a 2 cm path delay can be introduced into the GFO measurements for high solar activity period by not taking into account the electron content above this altitude. Furthermore, the GIMs can have errors of 20–30 TECU in low latitudes for high solar activity in areas where there is little GPS data (such as over the oceans). In this paper, we describe the results of ingesting GIM TEC data into the International Reference Ionosphere model (IRI-95) to mitigate these two effects.  相似文献   

3.
We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.  相似文献   

4.
The development of coastal ocean modeling in the recent years has allowed an improved representation of the associated complex physics. Such models have become more realistic, to the point that they can now be used to design observation networks in coastal areas, with the idea that a “good” network is a network that controls model state error. To test this ability without performing data assimilation, we set up a technique called Representer Matrix Spectra (RMS) technique that combines the model state and observation error covariance matrices into a single scaled representer matrix. Examination of the spectrum and the eigenvectors of that matrix informs us on which model state error modes a network can detect and constrain amidst the observation error background. We applied our technique to a 3D coastal model in the Bay of Biscay, with a focus on mesoscale activity, and tested the performance of various altimetry networks and an in situ array deployment strategy. It appears that a single nadir altimeter is not efficient enough at capturing coastal mesoscale physics, while a wide swath altimeter would do a much better job. Testing various local in situ array configurations confirms that adding a current meter to a vertical temperature measurement array improves the detection of secondary variability modes, while shifting the array higher on the shelf break would obviously enhance the model constraint along the coast. The RMS technique is easily set up and used as a “black box,” but the utility of its results is maximized by previous knowledge of model state error physics. The technique provides both quantitative (eigenvalues) and qualitative (eigenvectors) tools to study and compare various network options. The qualitative approach is essential to discard possibly inconsistent modes.  相似文献   

5.
In this study, the Navidad current, which flows along the northern coast of Spain in winter, is observed and characterized using coastal altimetry data over the period 1992–2002. This coastal current, marked by a strong interannual variability, is associated with eastward transport of warm waters along the shelf slope. Specific data editing and processing strategies have been applied to the along-track altimeter data, which allows us to retrieve altimetric sea level anomalies closer to the coast, with a better spatial coverage and improved quality when compared with standard altimetric products. The current variability observed upstream by in situ time series after November 1996 is well reproduced by the satellite across-track surface geostrophic current anomalies up until September 1999; this agreement degrades later in time. The combined use of satellite-derived current anomalies and sea-surface temperature anomalies allows us to develop indices of Navidad occurrences, in the first long-term, systematic survey of that current based on a multi-sensor approach. The satellite analyses confirm the previously identified Navidad occurrences in winter of 1995–1996, 1997–1998, and 2000–2001. Furthermore, a weak Navidad event was identified in winter 1996–1997. These four winters are associated with a negative North Atlantic Oscillation index in the previous fall, but the intensity of the Navidad is not correlated to the amplitude of that index.  相似文献   

6.
基于有限元方法的陆海大地水准面衔接   总被引:1,自引:1,他引:0       下载免费PDF全文
大陆上用重力数据和GPS水准数据确定(似)大地水准面,海洋上用卫星测高数据确定(似)大地水准面.由于沿海地区和近岸海域往往缺少完好的重力数据,近岸海域卫星测高数据质量相对较差,两类大地水准面在陆海相接区域精度偏低且存在拼合差.纯几何方法拟合陆海局部区域大地水准面,不能顾及大地水准面的物理特性,拟合结果不稳定.顾及到大地水准面的物理特性,依据其在局部所应满足的数学物理方程,拟合陆海局部区域大地水准面问题,转化为Laplace第一边值问题.讨论了有限元法衔接陆海局部区域大地水准面的数学思想,给出了相应的数学模型.  相似文献   

7.
Cao  Lu  Tang  Rui  Huang  Wei  Wang  Yuntao 《Ocean Dynamics》2021,71(2):237-249
Ocean Dynamics - Fronts in coastal oceans are important mesoscale processes that relate to regional dynamics and can impact ecosystems. The daily distribution of a sea surface temperature (SST)...  相似文献   

8.
Underwater noise from shipping is a growing presence throughout the world's oceans, and may be subjecting marine fauna to chronic noise exposure with potentially severe long-term consequences. The coincidence of dense shipping activity and sensitive marine ecosystems in coastal environments is of particular concern, and noise assessment methodologies which describe the high temporal variability of sound exposure in these areas are needed. We present a method of characterising sound exposure from shipping using continuous passive acoustic monitoring combined with Automatic Identification System (AIS) shipping data. The method is applied to data recorded in Falmouth Bay, UK. Absolute and relative levels of intermittent ship noise contributions to the 24-h sound exposure level are determined using an adaptive threshold, and the spatial distribution of potential ship sources is then analysed using AIS data. This technique can be used to prioritize shipping noise mitigation strategies in coastal marine environments.  相似文献   

9.
研究和实施了由卫星测高数据计算垂线偏差,用莫洛 金斯基(Molodensky)公式反演 大地水准面高,由此求得我国海域大地水准面高. 为了检核,将测高垂线偏差利用逆维宁迈 纳斯(Vening Meinesz)公式反演重力异常,与海上船测重力值进行了外部检核;同时还用 司托克斯(Stokes)公式,将上述反演的重力异常计算大地水准面高,与莫洛金斯基公式直 接解得的相应结果进行比较作为内部检核. 在积分计算中充分应用了FFT的严格公式.由重力和GPS水准数据确定的陆地大地水准面,和主要由卫星测高数据确定的海洋大地水准 面,二者之间一般都存在以系统误差为主的拼接差,本文分析了产生这一现象的主要原因, 并结合我国在陆海大地水准面拼接区重力资料稀疏的实际,提出了新的拼接技术,最后将拟 合参数校正中国全部海域的重 力大地水准面,以最大限度地削弱拼接点和制约测高海洋大地水准面可能存在的系统误差.  相似文献   

10.
Cyclogenesis and long-fetched winds along the southeastern coast of South America may lead to floods in populated areas, as the Buenos Aires Province, with important economic and social impacts. A numerical model (SMARA) has already been implemented in the region to forecast storm surges. The propagation time of the surge in such extensive and shallow area allows the detection of anomalies based on observations from several hours up to the order of a day prior to the event. Here, we investigate the impact and potential benefit of storm surge level data assimilation into the SMARA model, with the objective of improving the forecast. In the experiments, the surface wind stress from an ensemble prediction system drives a storm surge model ensemble, based on the operational 2-D depth-averaged SMARA model. A 4-D Local Ensemble Transform Kalman Filter (4D-LETKF) initializes the ensemble in a 6-h cycle, assimilating the very few tide gauge observations available along the northern coast and satellite altimeter data. The sparse coverage of the altimeters is a challenge to data assimilation; however, the 4D-LETKF evolving covariance of the ensemble perturbations provides realistic cross-track analysis increments. Improvements on the forecast ensemble mean show the potential of an effective use of the sparse satellite altimeter and tidal gauges observations in the data assimilation prototype. Furthermore, the effects of the localization scale and of the observational errors of coastal altimetry and tidal gauges in the data assimilation approach are assessed.  相似文献   

11.
Dzhamalov  R. G.  Safronova  T. I. 《Water Resources》2002,29(6):626-631
A quantitative estimate is made for the first time for the role of some chemicals discharged with groundwater into seas and oceans in the formation of hydrochemical regime in the coastal zone. The estimate is based on the regional and global regularities in the formation and distribution of submarine groundwater discharge into seas and oceans. A concept is proposed regarding the existence of geochemical and biological barriers on the submarine groundwater–seawater interface, which cause significant transformation and losses of many chemical elements.  相似文献   

12.
The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important for the use of gravity data especially, when computing geoid models in coastal regions.The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based on collocation, are investigated in this paper. Collocation offers a way of combining the individual airborne gravity observation with either the residual geoid observations derived from satellite altimetry or with gravity derived from these data using the inverse Stokes method implemented by Fast Fourier Transform (FFT).  相似文献   

13.
We evaluate in this paper the ability of several altimeter systems, considered separately as well as together with tide gauges, to control the time evolution of a barotropic model of the North Sea shelf. This evaluation is performed in the framework of the particular model errors due to uncertainties in bathymetry. An Ensemble Kalman Filter (EnKF) data assimilation approach is adopted, and observing-systems simulation experiments (OSSEs) are carried out using ensemble spread statistics. The skill criterion for the comparison of observing networks is, therefore, not based on the misfit between two simulations, as done in classic twin experiments, but on the reduction of ensemble variance occurring as a consequence of the assimilation. Future altimeter systems, such as the Wide Swath Ocean Altimeter (WSOA) and satellite constellations, are considered in this work. A single WSOA exhibits, for instance, similar performance as two-nadir satellites in terms of sea-level correction, and is better than three satellites in terms of model velocity control. Generally speaking, the temporal resolution of observations is shown to be of major importance for controlling the model error in these experiments. This result is clearly related to the focus adopted in this study on the specific high-frequency response of the ocean to meteorological forcing. Altimeter systems lack adequate temporal sampling for properly correcting the major part of model error in this context, whereas tide gauges, which provide a much finer time resolution, lead to better global statistical performance. When looking into further detail, tide gauges and altimetry are demonstrated to exhibit an interesting complementary character over the whole shelf, as tide gauge networks make it possible to properly control model error in a ∼100-km coastal band, while high-resolution altimeter systems are more efficient farther from the coast.  相似文献   

14.
Both coastal and global mean sea level rise by about 3.0 ± 0.5 mm/year from January 1993 to December 2004. Over shorter intervals the coastal sea level rises faster and over longer intervals slowly than the global mean, which trend is almost constant for each interval and is equal to 2.9 ± 0.5 mm/year in 1993–2008. The different trends are due to the higher interannual variability of coastal sea level, caused by the sea level regional variability, that is further averaged out when computing the global mean.Coastal sea level rise is well represented by a selected set of 267 stations of the Permanent Service for Mean Sea Level and by the corresponding co-located altimeter points. Its departure from coastal sea level computed from satellite altimetry in a 150 km distance from coast, dominated by a large rise in the Eastern Pacific, is due to the regional interannual variability.Regionally the trends of the coastal and open-ocean sea level variability are in good agreement and the main world basins have a positive averaged trend. The interannual variability is highly correlated with the El Nino Southern Oscillation (SO) and the North Atlantic Oscillation (NAO) climatic indices over both the altimeter period and the interval 1950–2001. Being the signal of large scale a small number of stations with good spatial coverage is needed. The reconstruction of the interannual variability using the spatial pattern from altimetry and the temporal patterns from tide gauges correlated to NAO and SOI restitutes about 50% of the observed interannual variability over 1993–2001.  相似文献   

15.
This paper reviews the impacts of new satellite altimeter data sets and new technology on the production of satellite gravity. It considers the contribution of the increased data volume, the application of new altimeter acquisition technology and the potential for future developments. Satellite altimeter derived gravity has provided gravity maps of the world's seas since the 1980s, but, from 1995 to 2010, virtually all improvements were in the processing as there were no new satellite data with closely spaced tracks. In recent years, new data from CryoSat-2 (launched in 2010) and the geodetic mission of Jason-1 (2012–2013) have provided a wealth of additional coverage and new technology allows further improvements. The synthetic aperture radar mode of CryoSat-2 uses a scanning approach to limit the size of the altimeter sea surface footprint in the along-track direction. Tests indicate that this allows reliable data to be acquired closer to coastlines. The synthetic aperture radar interferometric mode of CryoSat-2 uses two altimeters to locate sea-surface reflection points laterally away from the satellite track. In a study to generate gravity for freshwater lakes, this mode is found to be valuable in extending the available satellite coverage. The AltiKa altimeter uses higher frequency radar to provide less noisy sea-surface signals and its new orbit mode gives potential for further improvements in satellite gravity. Future developments include the potential for swath mapping to provide further gravity improvements.  相似文献   

16.
An algorithm is proposed for determining water level in inland water bodies and coastal zones of seas and oceans. The algorithm was tested for the water area of the Gorki Reservoir, for which radioaltimeter databases show considerable data losses. A model was constructed, describing the shape of a mean impulse reflected from a statistically heterogeneous piecewise-constant underlying surface (topographic model). The model was used to substantiate criteria for data choice for the Gorki Reservoir and to construct a regional algorithm for estimating water level using data from Jason-1 satellite and based on the analysis of the shape of telemetric impulses (retracking). Water level was calculated with the use of an algorithm of regional adaptive retracking Sensor Geophysical Data Record databases for the Gorki and Rybinsk reservoirs. Algorithm application has been shown to considerably increase the amount of actual data and significantly improve the accuracy of water level evaluation. The general principles of retracking of a complex domain (a coastal zone, an inland water body, etc.) are discussed. The principles are based on the calculation of signal with allowance made for the roughness of the reflecting surface and they can be applied to different geographic regions.  相似文献   

17.
Kämpf  Jochen 《Ocean Dynamics》2019,69(5):581-597
Ocean Dynamics - The wind-driven circulation of coastal oceans has been studied for many decades. Using a 2.5-dimensional hydrodynamic model, this work unravels new aspects inherent with this...  相似文献   

18.
Wave generation, propagation, and transformation from deep ocean over complex bathymetric terrains to coastal waters around Potter Cove (King George Island, South Shetland Islands, Antarctica) have been simulated for an austral summer month using the Simulating Waves Nearshore (SWAN) wave model. This study aims to examine and understand the wave patterns, energy fluxes, and dissipations in Potter Cove. Bed shear stress due to waves is also calculated to provide a general insight on the bed sediment erosion characteristics in Potter Cove.A nesting approach has been implemented from an oceanic scale to a high-resolution coastal scale around Potter Cove. The results of the simulations were compared with buoy observations obtained from the National Data Buoy Center, the WAVEWATCH III model results, and GlobWave altimeter data. The quality of the modelling results has been assessed using two statistical parameters, namely the Willmott’s index of agreement D and the bias index. Under various wave conditions, the significant wave heights at the inner cove were found to be about 40–50 % smaller than the ones near the mouth of Potter Cove. The wave power in Potter Cove is generally low. The spatial distributions of the wave-induced bed shear stress and active energy dissipation were found to be following the pattern of the bathymetry, and waves were identified as a potential major driving force for bed sediment erosion in Potter Cove, especially in shallow water regions. This study also gives some results on global ocean applications of SWAN.  相似文献   

19.
Lim  Chai Heng  Lettmann  Karsten  Wolff  J&#;rg-Olaf 《Ocean Dynamics》2013,63(11):1151-1174

Wave generation, propagation, and transformation from deep ocean over complex bathymetric terrains to coastal waters around Potter Cove (King George Island, South Shetland Islands, Antarctica) have been simulated for an austral summer month using the Simulating Waves Nearshore (SWAN) wave model. This study aims to examine and understand the wave patterns, energy fluxes, and dissipations in Potter Cove. Bed shear stress due to waves is also calculated to provide a general insight on the bed sediment erosion characteristics in Potter Cove.A nesting approach has been implemented from an oceanic scale to a high-resolution coastal scale around Potter Cove. The results of the simulations were compared with buoy observations obtained from the National Data Buoy Center, the WAVEWATCH III model results, and GlobWave altimeter data. The quality of the modelling results has been assessed using two statistical parameters, namely the Willmott’s index of agreement D and the bias index. Under various wave conditions, the significant wave heights at the inner cove were found to be about 40–50 % smaller than the ones near the mouth of Potter Cove. The wave power in Potter Cove is generally low. The spatial distributions of the wave-induced bed shear stress and active energy dissipation were found to be following the pattern of the bathymetry, and waves were identified as a potential major driving force for bed sediment erosion in Potter Cove, especially in shallow water regions. This study also gives some results on global ocean applications of SWAN.

  相似文献   

20.
 Mapping the mesoscale surface velocity stream function by combining estimates of surface height from satellite altimetry and surface currents from sequential infrared (sea-surface temperature) imagery using optimal interpolation is described. Surface currents are computed from infrared images by the method of maximum cross-correlations (MCC) and are combined with altimeter sea-level anomaly data from the TOPEX/Poseidon and ERS satellites. The analysis method was applied to 6 years of data from the East Australian Current region. The covariance of velocity and sea-level data is consistent with the statistical assumptions of homogeneous, isotropic turbulence, with typical length scales of order 220 km and time scales of 10 days in this region. Augmenting the analysis of altimeter data with MCC velocity observations improves the resolution of the surface currents, especially near the Australian coast, and demonstrates that the two data sources provide consistent and complementary observations of the surface mesoscale circulation. The volume of MCC data is comparable to that from a satellite altimeter, but with a more variable distribution of spatial and temporal resolution. In concert with altimetry, satellite radiometer velocimetry represents a technique useful for retrospective analysis of currents from high-resolution satellite radiometer data-sets. Received: 3 July 2001 / Accepted: 16 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号