首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
Five out of six Square Kilometre Array (SKA) science programs need extensive surveys at frequencies below 1.4 GHz and only four need high-frequency observations. The latter ones drive to expensive high surface accuracy collecting area, while the former ask for multi-beam receiver systems and extensive post correlation processing. In this paper, we analyze the system cost of a SKA when the field-of-view (Fov) is extended from 1 deg2 at 1.4 GHz to 200 deg2 at 0.7 GHz for three different antenna concepts. We start our analysis by discussing the fundamental limitations and cost issues of wide-band focal plane arrays (FPA) in dishes and cylinders and of wide-band receptors in aperture arrays. We will show that a hybrid SKA in three different antenna technologies will give the highest effective sensitivity for all six key science programs.  相似文献   

2.
Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preliminary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signals: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that the SKA1-low should be able to detect ionized bubbles of radius \(R_{\mathrm {b}} \gtrsim 10\) Mpc with ~100 h of observations at redshift z~8 provided that the mean outside neutral hydrogen fraction \(\mathrm {x}_{\text {HI}} \gtrsim 0.5\). We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. (Nature 474, 7353 (2011)). We find that a 5σ detection is possible with 600 h of SKA1-low observations if the QSO age and the outside xHI are at least ~2×107 Myr and ~0.2 respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly- α sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total ~ 1000 h of observations, SKA1-low should be able to detect those sources individually with a ~ 9σ significance at redshift z=15. We summarize how the SNR changes with various parameters related to the source properties.  相似文献   

3.
The sensitivity and versatility of SKA will provide microarcsec astrometric precision and high quality milliarcsec-resolution images by simultaneously detecting calibrator sources near the target source. To reach these goals, we suggest that the long-baseline component of SKA contains at least 25% of the total collecting area in a region between 1000 and 5000 km from the core SKA. We also suggest a minimum of 60 elements in the long-baseline component of SKA to provide the necessary (uv) coverage. For simultaneous all-sky observations, which provide absolute astrometric and geodetic parameters, we suggest using 10 independent subarrays each composed of at least six long-baseline elements correlated with the core SKA. We discuss many anticipated SKA long-baseline astrometric experiments: determination of distance, proper motion and orbital motion of thousands of stellar objects; planetary motion detections; mass determination of degenerate stars using their kinetics; calibration of the universal distance scale from 10 to 107 pc; the core and inner-jet interactions of AGN. With an increase by a factor of 10 in absolute astrometric accuracy using simultaneous all sky observations, the fundamental quasar reference frame can be defined to <10 μas and tied to the solar-system dynamic frame to this accuracy. Parameters associated with the earth rotation and orientation, nutation, and geophysical parameters, can be accurately monitored. Tests of fundamental physics include: solar and Jovian deflection experiments, the sky frame accuracy needed to interpret the gravity wave/pulsar-timing experiment, accurate monitoring of spacecraft orbits that impact solar system dynamics.  相似文献   

4.
The new generation of radio telescopes, such as the proposed Square Kilometer Array (SKA) and the Low-Frequency Array (LOFAR) rely heavily on the use of very large phased aperture arrays operating over wide band-widths at frequency ranges up to approximately 1.4?GHz. The SKA in particular will include aperture arrays consisting of many thousands of elements per station providing un-paralleled survey speeds. Currently two different arrays (from nominally 70?MHz to 450?MHz and from 400?MHz to 1.4?GHz) are being studied for inclusion within the overall SKA configuration. In this paper we aim to analyze the array contribution to system temperature for a number of regular and irregular planar antenna array configurations which are possible geometries for the low-frequency SKA (sparse disconnected arrays). We focus on the sub-500?MHz band where the real sky contribution to system temperature (T sys ) is highly significant and dominants the overall system noise temperature. We compute the sky noise contribution to T sys by simulating the far field response of a number of SKA stations and then convolve that with the sky brightness temperature distribution from the Haslam 408?MHz survey which is then scaled to observations at 100?MHz. Our analysis of array temperature is carried out by assuming observations of three cold regions above and below the Galactic plane. The results show the advantages of regular arrays when sampled at the Nyquist rate as well as their disadvantages in the form of grating lobes when under-sampled in comparison to non-regular arrays.  相似文献   

5.
The frequency specifications of the Square Kilometre Array (SKA) call for an optimum operation of the antenna elements from 25 down to 100 MHz. The current 12 m diameter US-SKA design is specified from 500 up to 25 GHz, with an upper goal of 35 GHz. At the low frequency end of the band (i.e., 100 MHz), a 12 m reflector antenna is about four wavelengths in diameter. Then, the question is: how well can you do, at this low frequency end of the specified band of operation for the SKA, with a symmetric reflector configuration using an ultra-wide-band prime focus feed? This paper presents the analysis of the antenna performance, in terms of A eff/T A, of three symmetric configurations of the 12 m US-SKA antenna design between 100 and 200 MHz.  相似文献   

6.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

7.
A general analysis of phased array noise properties and measurements, applied to one square meter tiles of the Thousand Element Array (THEA), has resulted in a procedure to define the noise budget for a THEA-tile (Woestenburg and Dijkstra, 2003). The THEA system temperature includes LNA and receiver noise, antenna connecting loss, noise coupling between antenna elements and other possible contributions. This paper discusses the various noise contributions to the THEA system temperature and identifies the areas where improvement can be realized. We will present better understanding of the individual noise contributions using measurements and analysis of single antenna/receiver elements. An improved design for a 1-m2 Low Noise Tile (LNT) will be discussed and optimized low noise performance for the LNT is presented. We will also give future perspectives of the noise performance for such tiles, in relation to the requirements for SKA in the 1 GHz frequency range.  相似文献   

8.
L.I. Gurvits   《New Astronomy Reviews》2004,48(11-12):1211
Several recent global and Space VLBI surveys of quasars, Active Galactic Nuclei of other types and star-burst galaxies provide a wealth of material on milli- and sub-milliarcsecond radio structures in hundreds of sources. Results of these projects are presented with an emphasis on the statistics of redshift- and angular-scale-dependent properties of the milli- and sub-milliarcsecond radio structures. These studies make possible disentanglement of intrinsic (possibly, evolutionary) phenomena of parsec-scale radio structures and the imprints of the cosmological model. The studies indicate a very promising potential of high-resolution applications of the Square Kilometer Array. Based on our pilot projects we estimate that a sample containing of the order of 104 faint radio sources in the luminosity range 1022–1026 W/Hz can be surveyed by a high-resolution SKA with the milliarcsecond resolution at cm wavelengths. Such the high resolution radio survey, including those conducted jointly by SKA and Space VLBI missions, in conjunction with data from other domains, will provide a new ground for extragalactic studies.  相似文献   

9.
New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500–1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.  相似文献   

10.
11.
In this paper, we investigate how the Square Kilometre Array (SKA) can aid in determining the evolutionary history of active galactic nuclei (AGN) from redshifts z = 0 → 6. Given the vast collecting area of the SKA, it will be sensitive to both ‘radio-loud’ AGN and the much more abundant ‘radio-quiet’ AGN, namely the radio-quiet quasars and their ‘Type-II’ counterparts, out to the highest redshifts. Not only will the SKA detect these sources but it will also often be able to measure their redshifts via the Hydrogen 21-cm line in emission and/or absorption. We construct a complete radio luminosity function (RLF) for AGN, combining the most recent determinations for powerful radio sources with an estimate of the RLF for radio-quiet objects using the hard X-ray luminosity function of [ApJ 598 (2003) 886], including both Type-I and Type-II AGN. We use this complete RLF to determine the optimal design of the SKA for investigating the accretion history of the Universe for which it is likely to be a uniquely powerful instrument.  相似文献   

12.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

13.
We discuss the prospects of using the redshifted 21-cm emission from neutral hydrogen in the post-reionization epoch to study our Universe. The main aim of the article is to highlight the efforts of Indian scientists in this area with the SKA in mind. It turns out that the intensity mapping surveys from SKA can be instrumental in obtaining tighter constraints on the dark energy models. Cross-correlation of the HI intensity maps with the Ly α forest data can also be useful in measuring the BAO scale.  相似文献   

14.
We report the first measurements of radio frequency spectrum occupancy performed at sites aimed to host the future radio astronomy observatory in Indonesia. The survey is intended to obtain the radio frequency interference (RFI) environment in a spectral range from low frequency 10 MHz up to 8 GHz. The measurements permit the identification of the spectral occupancy over those selected sites in reference to the allocated radio spectrum in Indonesia. The sites are in close proximity to Australia, the future host of Square Kilometre Array (SKA) at low frequency. Therefore, the survey was deliberately made to approximately adhere the SKA protocol for RFI measurements, but with lower sensitivity. The RFI environment at Bosscha Observatory in Lembang was also measured for comparison. Within the sensitivity limit of the measurement equipment, it is found that a location called Fatumonas in the surrounding of Mount Timau in West Timor has very low level of RFI, with a total spectrum occupancy in this measured frequency range being about 1 %, mostly found at low frequency below 20 MHz. More detailed measurements as well as a strategy for a radio quiet zone must be implemented in the near future.  相似文献   

15.
A sky model from CLEAN deconvolution is a particularly effective high dynamic range reconstruction in radio astronomy,which can effectively model the sky and remove the sidelobes of the point spread function(PSF)caused by incomplete sampling in the spatial frequency domain.Compared to scale-free and multi-scale sky models,adaptive-scale sky modeling,which can model both compact and diffuse features,has been proven to have better sky modeling capabilities in narrowband simulated data,especially for large-scale features in high-sensitivity observations which are exactly one of the challenges of data processing for the Square Kilometre Array(SKA).However,adaptive scale CLEAN algorithms have not been verified by real observation data and allow negative components in the model.In this paper,we propose an adaptive scale model algorithm with non-negative constraint and wideband imaging capacities,and it is applied to simulated SKA data and real observation data from the Karl G.Jansky Very Large Array(JVLA),an SKA precursor.Experiments show that the new algorithm can reconstruct more physical models with rich details.This work is a step forward for future SKA image reconstruction and developing SKA imaging pipelines.  相似文献   

16.
Radio frequency interference (RFI) has plagued radio astronomy from its inception. The Workshop on the Mitigation of Radio Frequency Interference in Radio Astronomy (RFI2004) was held in Penticton, BC, Canada in July 2004 in order to consider the prognosis for the RFI problem, in particular as it impacts the planned Square Kilometre Array (SKA). This paper concludes that RFI is unlikely to be a “showstopper” in achieving SKA science goals, but that improved RFI mitigation technology may nevertheless be essential in order to take advantage of the vastly improved sensitivity, bandwidth, and field of view. Reported results provide some optimism that the desired improvements in RFI mitigation technology are possible, but indicate that much more work is required.  相似文献   

17.
ASTRON has demonstrated the capabilities of a 4 m2, dense phased array antenna (Bij de Vaate et al., 2002) for radio astronomy, as part of the Thousand Element Array project (ThEA). Although it proved the principle, a definitive answer related to the viability of the dense phased array approach for the SKA could not be given, due to the limited collecting area of the array considered. A larger demonstrator has therefore been defined, known as “Electronic Multi-Beam Radio Astronomy Concept”, EMBRACE, which will have an area of 625 m2, operate in the band 0.4–1.550 GHz and have at least two independent and steerable beams. With this collecting area EMBRACE can function as a radio astronomy instrument whose sensitivity is comparable to that of a 25-m diameter dish. The collecting area also represents a significant percentage area (∼10%) of an individual SKA “station.” This paper presents the plans for the realisation of the EMBRACE demonstrator.  相似文献   

18.
I investigate the problem of high dynamic range continuum synthesis imaging in the presence of confusing sources, using scaling arguments and simulations. I derive a quantified cost equation for the computer hardware needed to support such observations for the EVLA and the SKA. This cost has two main components – from the data volume, scaling as D−6 (where D is the antenna diameter), and from the non-coplanar baselines effect, scaling as D−2, for a total scaling of D−8. A factor of two in antenna diameter thus corresponds to 12 years of Moore’s law (18 month doubling time) cost reduction in computing hardware. For a SKA built with 12.5 m antennas observing with 1 arcsecond at 1.4 GHz, I find the computing load to be about 150 Petaflops (costing about $500 million in 2015). For 25 m antennas, the load is about 256 times lower, costing $2 million in 2015. This new cost equation differs from that of Perley and Clark (2003), which has scaling as D−6. This is because I find that the excellent Fourier plane coverage of the small antenna design does not significantly change the convergence rate of the Clean algorithm, which is already satisfactory in this regime.The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

19.
We present a study of the dynamic range limitations in images produced with the proposed Square Kilometre Array (SKA) using the Cotton-Schwab CLEAN algorithm for data processing. The study is limited to the case of a small field of view and a snap-shot observation. A new modification of the Cotton-Schwab algorithm involving optimization of the position of clean components is suggested. This algorithm can reach a dynamic range as high as 106 even if the point source lies between image grid points, in contrast to about 103 for existing CLEAN-based algorithms in the same circumstances. It is shown that the positional accuracy of clean components, floating point precision and the w-term are extremely important at high dynamic range. The influence of these factors can be reduced if the variance of the gradient of the point spread function is minimized during the array design.  相似文献   

20.
In the standard galaxy formation scenario plasma clouds with a high thermal energy content must exist at high redshifts since the protogalactic gas is shock heated to the virial temperature, and extensive cooling, leading to efficient star formation, must await the collapse of massive haloes (as indicated by the massive body of evidence, referred to as downsizing ). Massive plasma clouds are potentially observable through the thermal and kinetic Sunyaev–Zel'dovich effects and their free–free emission. We find that the detection of substantial numbers of galaxy-scale thermal Sunyaev–Zel'dovich signals is achievable by blind surveys with next generation radio telescope arrays such as EVLA, ALMA and SKA. This population is even detectable with the 10 per cent SKA, and wide field of view options at high frequency on any of these arrays would greatly increase survey speed. An analysis of confusion effects and of the contamination by radio and dust emissions shows that the optimal frequencies are those in the range 10–35 GHz. Predictions for the redshift distributions of detected sources are also worked out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号