首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
ABSTRACT

We construct a complete density transection based on the velocity structures across the Zhongsha Bank in the South China Sea. Gravity modelling of the lateral density contrasts between tectonic units helps us to determine the structural attributes and boundaries between continental blocks and deep basins. The configuration of the continent–ocean boundary (COB) around the Zhongsha Bank is mapped based on the gravity/magnetic anomaly and crustal structures. A low-density mantle is found beneath the Zhongsha Bank and the oceanic basins, and this mantle is associated with the high heat-flow background. The COB orientation is northeast-east in the north of the bank, with faulted linear structures. In further southeast, where there is a more intact crust, the COB orientation changed to north-northeast. The reconstructed density model and gravity/magnetic map indicate that the Zhongsha Bank is conjugated with the Liyue Bank by a rifted basin, where the crust had experienced localized deformation before the seafloor spreading. Because of the insufficient magmatism in the oceanic basin, the spreading ridge propagates into the weakened continental lithosphere between the two continental blocks, thus completely separating the Zhongsha Bank from the Liyue Bank. Seafloor spreading ridge jumps within the South China Sea may also be affected by the heterogeneous lithosphere beneath the continental blocks and oceanic basins.  相似文献   

2.
This paper reviews the Mesozoic continental flood basalts (CFBs) associated with the break-up and dispersal of Gondwana from 185-60 Ma, the conditions for melt generation in mantle plumes and within the continental mantle lithosphere, and possible causes for lithospheric extension. The number of CFB provinces within Gondwana is much less than the number of mantle plumes that are likely to have been emplaced beneath it in the 300 Ma prior to its initial break-up. Also, the difference between the age of the peak of CFB volcanism and that of the oldest adjacent ocean crust decreases with the age of volcanism during the break-up and dispersal of Gondwana. The older CFBs of Karoo and Ferrar appear to have been derived largely from source regions within the mantle lithosphere. It is only in the younger Paranâ-Etendeka and Deccan CFBs that there are igneous rocks with major, trace element and radiogenic isotope ratios indicative of melting within a mantle plume. These younger CFBs are also clearly associated with hot spot traces on the adjacent ocean floor. The widespread 180 Ma magmatic event is attributed to partial melting within the lithosphere in response to thermal incubation over 300 Ma. In the case of the Ferrar (Antarctica) this was focussed by regional plate margin forces. The implication is that supercontinents effectively self-destruct in response to the build up of heat and resultant magmatism, since these effects significantly weaken the lithosphere and make it more susceptible to break-up in response to regional tectonics. The younger CFB of Paranâ-Etendeka was generated, at least in part, because the continental lithosphere had been thinned in response to regional tectonics. While magmatism in the Deccan was triggered by the emplacement of the plume, that too may have been beneath slightly thinned lithosphere.  相似文献   

3.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。  相似文献   

4.
板块俯冲起始与大陆地壳演化   总被引:1,自引:0,他引:1  
组成大陆地壳的物质主要来自两个地质过程:地幔柱活动和板块俯冲。目前大多数研究认为板块俯冲起始于30多亿年前。在板块俯冲起始之前,基性的初始地壳物质受热重熔是大陆地壳生长的主要方式,其中,地幔柱活动是关键。地幔柱不仅向地壳输送玄武质岩浆,同时导致已有玄武质岩石和沉积岩通过部分熔融向中酸性岩石转化。当原始岩石圈强度足够大时,地幔柱会导致岩石圈倾斜、破裂,产生下滑力,诱发板块俯冲。板块俯冲引发岩浆活动,产生大量的岩浆岩,如岛弧安山岩、弧后盆玄武岩等。这些岩浆岩通过喷发、侵位,再经由块体拼贴、增生等过程加入到大陆地壳,是大陆地壳生长的主要途径。同时,板内岩浆活动乃至地幔柱活动等也与板块俯冲有直接或者间接的联系。俯冲再循环物质促进地幔柱发育,也为大陆地壳的生长提供物源和热能。与此同时,大陆地壳不断风化剥蚀,其中一部分沉积物随俯冲板块再循环到地幔,而板块俯冲过程也通过俯冲剥蚀等过程,将仰冲盘岩石圈物质刮削带入地幔。这些是大陆地壳消减的主要途径。目前大陆地壳增生和消减基本处于动态平衡。  相似文献   

5.
The main features of the volcanic and nonvolcanic passive margins of the North and Central Atlantic are considered. The margins are compared using rather well-studied reference tectonotypes as examples. The conjugate margins of the Norwegian-Greenland region and the margins of West Iberia and Newfoundland are chosen as tectonotypes of volcanic and nonvolcanic margins, respectively. The structural and magmatic features of the margins and their preceding history are discussed. A complex of interrelated attributes is shown for each tectonotype. The Norwegian-Greenland region close to the Iceland plume is distinguished by narrow zones of stretched continental crust, rapid localization of stretching with breakup of the continent, a high rate of subsequent spreading, and intense magmatism with the formation of a thick new crust at the margin and the adjacent oceanic zone. The Iberia-Newfoundland region, remote from the plumes, is characterized by wide zones of stretched continental crust, long-term and diachronous prebreakup extension propagating northward, extremely restricted mantle melting during rifting and initial spreading, and frequent occurrence of ancient crustal complexes and serpentinized mantle rocks at the margin. Crustal faults and a thin tectonized oceanic crust appear along the margin under conditions of slow spreading. A model of hot and fast spreading with a high degree of melting in the mantle is applicable to the Norwegian-Greenland region, whereas a model of cold and slow amagmatic rifting with a long pre-breakup stretching and thinning of the lithosphere is appropriate to the Iberia-Newfoundland margins. The differences in the development of the margins is determined by the interaction of many factors: deep temperature, rheology of the underlying lithosphere, heterogeneities in the previously formed crust, and the duration and rate of stretching. All of these factors can be related to the effect of deep plumes and propagation of the extension zone toward the segments of the cold Atlantic lithosphere. Both types of margins also reveal similar features, in particular asymmetry. It is suggested that the rotation forces superimposed on the general tectonomagmatic pattern controlled by plumes could have been the cause of structural asymmetry.  相似文献   

6.
中国东部燕山期和四川期岩石圈构造滑脱与岩浆起源深度   总被引:9,自引:0,他引:9  
较确切地研究岩石圈内部构造滑脱面在地质历史时期形成的时间和部位是当前大地构造学研究的一个重要课题。通过大量收集中国东部燕山期(205~135Ma)和四川期(135~52Ma)岩浆起源深度资料来判断岩石圈内部和底部是否存在局部的构造滑脱界面,是否发生层圈相互作用,是否发生部分的解耦现象,是一种可行的研究方法。研究表明,中国东部燕山期和四川期岩石圈板块的构造滑脱、圈层的解耦作用及相互作用主要集中在中地壳、莫霍面与区域性主干断层的交线附近,而岩石圈板块的底面却并不存在大幅度的滑移。中国东部燕山期和四川期岩浆活动比较发育的地区基本上都位于大兴安岭—山西西部—武陵山—十万大山一线以东地区,而在此线以西地区岩浆活动相当微弱。笔者认为,在侏罗—白垩纪时期,该线以西缺少岩浆活动的地区可能就是当时的大陆型岩石圈,而该线以东岩浆活动剧烈的地区可能就属于海陆过渡型岩石圈。中国东部岩石圈的转型和"变薄",不太可能是深部地幔羽、去根作用、深部地幔热物质上涌或大陆伸展作用的结果,也不太可能与太平洋板块的俯冲作用有直接联系。  相似文献   

7.
作为伸展陆壳和正常洋壳之间重要的过渡和衔接,洋陆转换带(ocean-continent transition,简写为OCT)蕴含有丰富的地壳岩石圈伸展破裂过程的信息。文中通过系统的资料调研,在总结OCT研究历史、现状和发展趋势的基础上,阐明了OCT的现代概念、类型及其识别标志;详细介绍了以OCT为基础而建立的被动陆缘地壳岩石圈结构构造单元划分方案、表层沉积盆地构造地层格架及重要的构造变革界面特征;分析了大型拆离断层在地壳岩石圈薄化、地幔剥露过程中的控制作用;揭示了陆缘变形集中、迁移和叠合的规律,建立了被动陆缘岩石圈伸展、薄化、剥露和裂解模式。最后,论文对比了国际非岩浆型被动大陆边缘与我国南海OCT的研究,介绍了南海OCT和陆缘深水超深水盆地研究的新发现,提出深入研究南海OCT将为南海陆缘构造演化、洋盆扩张过程和深水超深水盆地的成因机制研究提供新的启示。  相似文献   

8.
大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例   总被引:1,自引:0,他引:1  
大陆弧岩浆带位于汇聚板块的前缘,记录了洋陆俯冲过程和大陆地壳生长过程,是研究壳幔相互作用的天然实验室。越来越多的研究发现,大陆弧岩浆的生长与侵位并不是均一的、连续的过程,而是呈现阶段性、峰期性特征,即幕式岩浆作用。弧岩浆峰期与岩浆平静期相比,岩浆增生速率显著增强,易于发生岩浆聚集,继而形成大的岩基,如北美西部科迪勒拉造山带内华达岩基、半岛岩基等。藏南冈底斯岩浆带位于拉萨地体南缘,属于印度-亚洲碰撞带的上盘,其南侧与喜马拉雅地体以雅鲁藏布蛇绿岩带为界。冈底斯弧岩浆形成时代集中在240~50 Ma期间,其形成与演化与新特提斯洋壳岩石圈板片俯冲到拉萨地体之下密切相关。因此,对冈底斯弧型岩浆作用的研究,将很好地揭示大陆型弧岩浆的演化过程,继而反演洋-陆俯冲过程,以及壳幔相互作用过程。通过对冈底斯岩浆带岩浆岩锆石U-Pb及Lu-Hf同位素,以及弧前和前陆盆地碎屑锆石U-Pb和Lu-Hf同位素的收集和整理,结合已经发表的区域地质资料的总结,我们发现冈底斯弧型岩浆演化具有如下特点:1幕式侵位,岩浆峰期为100~80 Ma和65~40 Ma,中间为岩浆平静期;2峰期阶段岩浆聚集,形成巨大岩基;岩石同位...  相似文献   

9.
杨高学  朱钊  刘晓宇  李海  佟丽莉 《地质学报》2023,97(6):2054-2066
蛇绿岩记录了大洋岩石圈形成、演化、消亡的全过程,是刻画区域板块构造和洋 陆格局演化的关键证据。本文通过系统梳理前人相关研究,总结西准噶尔蛇绿岩最新研究成果,探讨大陆地壳增生方式、恢复古大洋演化历史,从而对西准噶尔构造体制转化提供新制约。西准噶尔地区发育多条震旦纪—石炭纪被构造肢解的蛇绿岩带,具有典型的岩块 基质结构,绝大多数蛇绿岩包括正常洋壳组分和海山/大洋高原残片,其中基性岩具有MORB和OIB的地球化学特征。基于前人研究,本文认为在西准噶尔古大洋发育过程中,发育不同时代与地幔柱有关的海山/大洋高原,同时存在增生型和侵蚀型两类汇聚板块边界。另外,大洋高原增生不仅是大陆地壳增生的有效途径之一,还可能诱发俯冲极性反转和传递。而在大洋高原形成初期,还可能存在地幔柱诱发俯冲起始机制。  相似文献   

10.
Five domains (microplates) have been recognized by seismic anisotropy in the mantle lithosphere of the Bohemian Massif. The mantle domains correspond to major crustal units and each of the domains bears a consistent fossil olivine fabric formed before their Variscan assembly. The present-day mantle fabric indicates that this process consisted of at least three oceanic subductions, each followed by an underthrusting of the continental lithosphere. The seismic anisotropy does not detect remnants of the oceanic subductions, but it can trace boundaries of the preserved continental domains subsequently underthrust along the paths of previous oceanic subductions. The most robust continent–continent collision was followed by westward underthrusting of the Brunovistulian mantle lithosphere, still detectable by seismic anisotropy more than 100 km beneath the Moldanubian mantle lithosphere. Major occurrences of the high-pressure/ultra high-pressure (HP–UHP) rocks follow the ENE and NNE oriented sutures and boundaries of the mantle–lithosphere domains mapped from three-dimensional modeling of body-wave anisotropy. The HP–UHP rocks are products of oceanic subductions and the following underthrusting of the continental crust and mantle lithosphere exhumed along the mantle boundaries. The close relation of the mantle sutures and occurrences of the HP–UHP rocks near the paleosubductions testifies for models interpreting the granulite–garnet peridotite association by oceanic/continental subduction/underthrusting followed by the exhumation of deep-seated rocks. Our findings support the bivergent subduction model of tectonic development of the central part of the Bohemian Massif. The inferences from seismic anisotropy image the Bohemian Massif as a mosaic of microplates with a rigid mantle lithosphere preserving a fossil olivine fabric. The collisional mantle boundaries, blurred by tectonometamorphic processes in easily deformed overlying crust, served as major exhumation channels of the HP–UHP rocks.  相似文献   

11.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   

12.
俯冲工厂和大陆物质的俯冲再循环研究   总被引:3,自引:3,他引:3  
板块的俯冲系统可以比拟为一个工厂。再循环研究强调对俯冲物质各种组分的行为、去向的追踪和定量分析。沉积物俯冲和俯冲侵蚀作用导致陆壳物质返回地幔,初步估算表明,大陆物质返回地幔的速率与岩浆活动导致陆壳生长的速率在数量上大体相当,晚近时期陆壳的净增长速率可能近于零。大洋岛玄武岩地化特征上的多样性提示,沉入下地幔的板片可能从深部卷入地幔柱的源区。俯冲再循环过程对地壳、地幔的动力学和演化产生深刻影响。  相似文献   

13.
Speculations on the nature and cause of mantle heterogeneity   总被引:8,自引:0,他引:8  
Hotspots and hotspot tracks are on, or start on, preexisting lithospheric features such as fracture zones, transform faults, continental sutures, ridges and former plate boundaries. Volcanism is often associated with these features and with regions of lithospheric extension, thinning, and preexisting thin spots. The lithosphere clearly controls the location of volcanism. The nature of the volcanism and the presence of ‘melting anomalies’ or ‘hotspots’, however, reflect the intrinsic chemical and lithologic heterogeneity of the upper mantle. Melting anomalies—shallow regions of ridges, volcanic chains, flood basalts, radial dike swarms—and continental breakup are frequently attributed to the impingement of deep mantle thermal plumes on the base of the lithosphere. The heat required for volcanism in the plume hypothesis is from the core. Alternatively, mantle fertility and melting point, ponding and focusing, and edge effects, i.e., plate tectonic and near-surface phenomena, may control the volumes and rates of magmatism. The heat required is from the mantle, mainly from internal heating and conduction into recycled fragments. The magnitude of magmatism appears to reflect the fertility, not the absolute temperature, of the asthenosphere. I attribute the chemical heterogeneity of the upper mantle to subduction of young plates, aseismic ridges and seamount chains, and to delamination of the lower continental crust. These heterogeneities eventually warm up past the melting point of eclogite and become buoyant low-velocity diapirs that undergo further adiabatic decompression melting as they encounter thin or spreading regions of the lithosphere. The heat required for the melting of cold subducted and delaminated material is extracted from the essentially infinite heat reservoir of the mantle, not the core. Melting in the upper mantle does not requires the instability of a deep thermal boundary layer or high absolute temperatures. Melts from recycled oceanic crust, and seamounts—and possibly even plateaus—pond beneath the lithosphere, particularly beneath basins and suture zones, with locally thin, weak or young lithosphere. The characteristic scale lengths—150 to 600 km—of variations in bathymetry and magma chemistry, and the variable productivity of volcanic chains, may reflect compositional heterogeneity of the asthenosphere, not the scales of mantle convection or the spacing of hot plumes. High-frequency seismic waves, scattering, coda studies and deep reflection profiles are needed to detect the kind of chemical heterogeneity and small-scale layering predicted from the recycling hypothesis.  相似文献   

14.
The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise–Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb–Sr–Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.  相似文献   

15.
全球海山玄武岩数据挖掘研究   总被引:2,自引:0,他引:2       下载免费PDF全文
海山是一个地貌术语,通常分为出露于海平面以上和淹没于以下的两类。海山具有复杂的成因,可产于各种不同的构造环境,其出露的岩性主要有:洋岛玄武岩(OIB)、大洋中脊玄武岩(MORB)、弧后盆地玄武岩(BABB)、岛弧玄武岩(IAB)和大陆边缘玄武岩(CMB)等。本文的研究表明,CMB 和OIB 的地球化学性质大体相似,但是,二者的成因可能既有相似性,也存在某些差异性。OIB 产于板块内部,属于板内岩浆活动的产物,通常认为与“热点”或“地幔柱”有关;而CMB 则可能是古大陆岩石圈与年轻洋壳发生浅部再循环的结果。所以,除“热点”理论外,古大陆岩石圈和年轻洋壳的浅部再循环在海山和洋岛火山形成过程中也扮演了重要的角色。来自IAB 的样品明显亏损Nb、Ta和富集K、Pb、Cs、Rb等大离子亲石元素,表明IAB 的形成与俯冲作用有关。研究表明,全球可能存在3 种类型的热点:第一类是原生的热点,来自深部地幔;第二类是次生的热点,可能形成在地幔柱的浅部,来自超级地幔柱的上部;第三类来自上地幔,可能是大洋岩石圈伸展的产物。因此,海山的成因不可能用地幔柱一种模式予以解释,还应当考虑板块活动中其他各种因素(洋壳再循环、古老陆壳再循环、消减带物质以及水的加入,部分熔融程度、岩浆混合作用、不同地幔端元混合等)的影响。  相似文献   

16.
洋壳厚度受多方面因素的影响,前人大多关注地幔温度、地幔源成分等岩石圈深部因素,很少关注岩石圈浅层的热液循环对洋壳厚度的影响。利用基于有限元的数值模拟手段,对扩张期不同背景(洋中脊、拆离断层)、不同扩张速率的热液循环与洋壳增生的关系进行研究。结果表明:洋壳增生达到稳定前,热液循环导致理论洋壳厚度发生阶段性减薄,减薄量随时间改变,并且推迟了上地幔中熔融体出现的时间;当洋壳增生达到稳定后,热液循环下产生的理论洋壳厚度反而比无热液循环的更厚。结合洋壳增生过程中对流热通量的变化分析,在洋壳增生前期的上地幔温度低,驱动热液循环的热源小,产生的对流热通量相对较小且不稳定,热液循环缓慢冷却上地幔顶部的温度,进而推迟上地幔初始熔融的时间,减弱上地幔的熔融,并造成一定时间阶段内的生成理论洋壳比正常理论洋壳厚度更薄;当洋壳增生达到稳定后,对流热通量达到最大并稳定,热液循环持续快速的冷却上地幔顶部温度,导致上地幔深部的热向上地幔顶部补给,反而增大了上地幔顶部的温度和熔融量,进而增大了理论洋壳厚度。随着扩张速率的增大,理论洋壳厚度增大,对流热通量增大,热液循环导致的洋壳阶段性减薄的最大减薄量也增大,阶段性减薄的时间缩短。结合南海西南次海盆的洋壳结构特征分析:两条横跨南海西南次海盆的地震剖面显示,海盆内存在异常薄的洋壳区域,并且两条地震剖面的最薄洋壳厚度相差0. 85 km,推测海盆内异常薄洋壳和不同扩张时期的最薄洋壳厚度差异受到扩张期热液循环阶段性减薄洋壳作用的影响。  相似文献   

17.
洋-陆过渡带是理解大陆岩石圈破裂和海底初始扩张的关键位置,但是在南海北部地区仍然存在关于相关地质过程的诸多疑问.通过近年开展的国际大洋发现计划航次以及深部地质地球物理探测,取得以下4个方面的认识.(1)南海北部的洋-陆边界一般与自由空间重力异常的正-负值过渡位置对应,而更加准确地限定需要结合反射、折射地震资料.稳定大洋岩石圈生成与大陆岩石圈最终破裂之间的洋-陆过渡边界的位置比以往认为的还应往深海盆方向移动.(2)洋-陆过渡带代表了远端带构造作用减弱和岩浆作用逐渐增强的区域.陆坡地壳发育扩张后岩浆底侵、洋-陆过渡带发育同破裂期岩浆喷出结构和侵入反射体.(3)在中生代的古俯冲带弧前区域,新生代的断裂沿着早期的构造开始活动,岩石圈多处发生强烈的共轭韧性剪切作用.随着大陆岩石圈的进一步拉伸减薄,部分靠陆一侧的裂谷中心停止张裂,成为夭折裂谷,以台西南盆地南部凹陷、白云凹陷、西沙海槽为代表,而南海陆缘异常伸展和最终破裂的地方集中在南侧裂谷中心.夭折裂谷下亦发现地幔蛇纹石化,进一步反映了较弱的同破裂岩浆活动.(4)南海初始洋壳的增生沿着大陆边缘走向具有显著的变化,南海东北部洋-陆过渡带下伏地幔明显抬升和部分蛇纹石化,地震纵、横波速度以及折射波衰减特征都支持此观点,反映南海东北部是一个贫岩浆型大陆边缘.未来,南海北部洋-陆过渡带有望成为南海“莫霍钻”的理想备选钻探区.   相似文献   

18.
The North Penninic basin was a subbasin in the northern part of the Mesozoic Tethys ocean. Its significance within the framework of this ocean is controversial because it is not clear whether it was underlain by thinned continental or oceanic crust. Remnants of the eastern North Penninic basin are preserved in the Alps of eastern Switzerland (Grisons) as low metamorphic "Bündnerschiefer" sediments and associated basaltic rocks which formed approximately 140–170 Ma ago (Misox Bündnerschiefer zone, Middle Jurassic to Early Cretaceous). Nb/U, Zr/Nb, and Y/Nb ratios, as well as Nd–Sr isotopic and REE data of most of the metabasalts point to a depleted MORB-type mantle origin. They have been contaminated by magmatic assimilation of Bündnerschiefer sediments and by exchange with seawater, but do not prove the existence of a subcontinental lithospheric mantle or continental crust beneath the North Penninic basin. This suggests that the studied part of the North Penninic realm was underlain by oceanic crust. Only the metabasalts from two melange zones (Vals and Grava melanges) show a more important contamination by crustal material. Since this type of contamination cannot be observed in the other tectonic units, we suggest that its occurrence is related to melange formation during the subduction of the North Penninic basin in the Tertiary. The North Penninic basin was probably, despite the occurrence of oceanic crust, smaller than the South Penninic ocean where the presence of oceanic crust is well established. Modern analogues for the North Penninic basin could be the transitional zone of the Red Sea or the pull-apart basins of the southernmost Gulf of California where local patches of oceanic crust with effusive volcanism have been described.  相似文献   

19.
新生代火山岩中的深源捕虏体资料反映,南海北部及其沿岸地区岩石圈地幔的主体由主量元素易熔组分相对饱满的、同位素组成类似MORB-OIB型的、高温型的二辉橄榄岩所组成;但在其顶部残留有古老的岩石圈地幔,它由主量元素易熔组分相对贫瘠的、同位素组成类似EM型的、较低温的方辉橄榄岩组成。在下地壳底部,分布着由晚中生代幔源岩浆分离结晶和堆晶的基性麻粒岩。由此提出了该区中、新生代壳 -幔或岩石圈 -软流圈相互作用与构造演化的简略模式: (1)印支期 -燕山早期为地壳岩石圈厚度增大的华夏型后地台活化造山带环境;(2)燕山晚期岩石圈快速减薄(如拆沉作用),造山带拉伸塌陷,地壳深处并发生广泛的底侵作用; (3)始新世 -渐新世软流圈再次上涌(如地幔柱的影响),岩石圈地幔发生底蚀减薄,地壳也因为下部层的塑性流展和上部层的张裂拉伸而减薄; (4)中新世以来,由于地幔热源在拉伸环境中被释放,壳幔发生冷却,部分软流圈地幔转化为“新生的”岩石圈地幔。研究进一步说明,南海北部陆缘扩张是该区大陆构造演化到大陆活化造山带后期,在深部壳 -幔的相互作用下,岩石圈所发生的垂向减薄和侧向伸展,既不同于弧后扩张,也不是受控于大西洋式的海底扩张。  相似文献   

20.
Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号