首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MHD simulation study is performed to investigate magnetic reconnection induced by the Kelvin Helmholtz instability in the parallel configuration of the uniform magnetic field geometry as well as the sheared field geometry. Highly distorted magnetic field lines due to Kelvin Helmholtz instability become reconnected and flattened so that they resume the straight field line structure in the final stage. When the initial magnetic field is sheared, magnetic islands formed as a result of magnetic reconnection are transported toward the weak field region but they soon disappear since these islands are of small scales and suffer strong diffusions. Morphological change in the long term evolution is most dramatic in the small range of magnetic field intensity in both the uniform field case and the sheared field case, which is not too strong to stabilize vortex growing early on or too weak to have negligible effect on the instability. Energy conversion and the momentum transport are also most effective in this small range.  相似文献   

2.
Lapenta  Giovanni  Knoll  D.A. 《Solar physics》2003,214(1):107-129
We consider the stability of current sheets where a normal component of the field is present. It is well known that reconnection in such systems progresses orders of magnitude too slow to explain observations, even when full kinetic models are used. We consider here a new possible mechanism for fast reconnection in such systems. We consider the effect of the possible presence of velocity shear that can drive the Kelvin–Helmholtz instability (KHI). The effect of the KHI is shown to convert shear flow into compression flow that drives reconnection. Three scaling effects can be discerned in the simulations. First, the reconnection rate is directly controlled by the driving mechanism which is provided by the KHI. The result of this new mechanism is that fast reconnection can be achieved even in absence of anomalous resistivity. Second, the effect of varying the initial sheared flow along the main magnetic field direction enhances the reconnection process. Finally, the reconnection rate is insensitive to the value of resistivity.  相似文献   

3.
《Planetary and Space Science》2007,55(12):1811-1816
In this paper, the Kelvin–Helmholtz instability is studied by solving the ideal MHD equations for a compressible plasma. A transition layer of finite thickness between two plasmas, across which the magnitude of the velocity and the density change, is assumed. Growth rates are presented for the transverse case, i.e., the flow velocity is perpendicular to the magnetic field. If only the velocity changes across the boundary layer and the density is kept constant, an important quantity affecting the growth of the Kelvin–Helmholtz instability is the magnetosonic Mach number, which characterizes compressibility. The growth rates for the case when both, the velocity and the density, change are very sensitive to the ratio of the upper plasma density to the lower plasma density: a decrease of the density ratio yields a decrease of the growth rate. Including a density profile is very important for the application of the Kelvin–Helmholtz instability to the solar wind flow around unmagnetized planets, e.g., Venus, where the plasma density increases from the magnetosheath to the ionosphere.  相似文献   

4.
激光驱动亥姆霍兹电容线圈靶的磁重联实验已经提出并进行了多年.当实验中的金属板被强激光照射时产生自由电子,这些自由电子的运动在连接两金属板的两个平行线圈中产生电流,由两个平行线圈内部电流产生的磁场之间随即发生重联.该实验不同于其他直接由Biermann电池效应所产生高β(等离子体热压与磁压的比值)环境下的磁重联实验.对该类实验进行了3维磁流体动力学数值模拟,首次展示了亥姆霍兹电容器线圈靶如何驱动磁重联的过程.数值模拟结果清楚地表明,磁重联的出流等离子体在线圈周围发生与实验结果相一致的堆积现象.线圈电流产生的磁场可高达100 T,使得磁重联区域周围的等离子体β值达到10^-2.与实验室结果进行比较,数值模拟重复了实验展示的大多数特征,可有助于深入认识和理解实验结果背后的物理学原理.  相似文献   

5.
Zipper reconnection has been proposed as a mechanism for creating most of the twist in the flux tubes that are present prior to eruptive flares and coronal mass ejections. We have conducted a first numerical experiment on this new regime of reconnection, where two initially untwisted parallel flux tubes are sheared and reconnected to form a large flux rope. We describe the properties of this experiment, including the linkage of magnetic flux between concentrated flux sources at the base of the simulation, the twist of the newly formed flux rope, and the conversion of mutual magnetic helicity in the sheared pre-reconnection state into the self-helicity of the newly formed flux rope.  相似文献   

6.
The process of magnetic reconnection in anisotropic plasmas is studied numerically using a 2-dimensional, 3-component hybrid simulation. The results of the calculation show that, when the plasma pressure in the direction perpendicular to magnetic field is larger than that in the parallel direction (e.g. P/P = 1.5), instability may greatly increase, speeding up the rate of reconnection. When P is smaller than P, (e.g., when P/P = 0.6), fire hose instability appears, which will restrain the tearing mode instability and the process of magnetic reconnection.  相似文献   

7.
《New Astronomy Reviews》2002,46(2-7):433-437
We investigate the growth of jet plus entrained mass in simulations of supermagnetosonic cylindrical and expanding jets. The entrained mass spatially grows in three stages: from an initially slow spatial rate to a faster rate and finally at a flatter rate. These stages roughly coincide with the similar rates of expansion in simulated radio intensity maps, and also appear related to the growth of the Kelvin–Helmholtz instability through linear, nonlinear, and saturated regimes. In the supermagnetosonic cylindrical jets, we found that a jet with an embedded primarily toroidal magnetic field is more stable than a jet with a primarily axial magnetic field. Also, pressure-matched expanding jets are more stable and entrain less mass than cylindrical jets with equivalent inlet conditions. We investigate the growth of jet plus entrained mass in simulations of supermagnetosonic cylindrical and expanding jets. The entrained mass spatially grows in three stages: from an initially slow spatial rate to a faster rate and finally at a flatter rate. These stages roughly coincide with the similar rates of expansion in simulated radio intensity maps, and also appear related to the growth of the Kelvin–Helmholtz instability through linear, nonlinear, and saturated regimes. In the supermagnetosonic cylindrical jets, we found that a jet with an embedded primarily toroidal magnetic field is more stable than a jet with a primarily axial magnetic field. Also, pressure-matched expanding jets are more stable and entrain less mass than cylindrical jets with equivalent inlet conditions.  相似文献   

8.
Reconnection is the most efficient way to release the energy accumulated in the tense astrophysical magnetoplasmas. As such it is a basic paradigm of energy conversion in the universe. Astrophysical reconnection is supposed to heat plasmas to high temperatures, it drives fast flows, winds and jets, it accelerates particles and leads to structure formation. Reconnection can take place only after a local breakdown of the plasma ideality, enabling a change of the magnetic connection between plasma elements. After Giovanelli first suggested magnetoplasma discharges in 1946, reconnection has usually been identified with vanishing magnetic field regions. However, for the last ten years a discussion has been going on about the structure of 3 D reconnection, e.g., whether in 3 D it is possible also without magnetic nulls or not. We first shortly review the relevant magnetostatic and kinematic fluid theory results to argue than that a kinetic approach is necessary to reveal the generic three-dimensional structure and dynamics of reconnection in collisionless astrophysical plasmas. We present results about the 3 D structure of kinetic reconnection in initially antiparallel magnetic fields. They were obtained by selfconsistently considering ion and electron inertia as well as dissipative wave-particle resonances. In this approach reconnection is a natural consequence of the instability of thin current sheets. We present the results of a nonlocal linear dispersion theory and describe the nonlinear evolution of the instability using numerical particle code simulations. The decay of thin current sheets directly leads to a configurational instability and three-dimensional dynamic reconnection. We report the resulting generic magnetic field structure. It contains pairs of magnetic nulls, connected by separating magnetic flux surfaces through which the plasma flows and along which reconnection induces large parallel electric fields. Our results are illustrated by virtual reality views and movies, both stored on the attached CD-ROM and also being available from the Internet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We investigate the nonlinear evolution of resistive tearing mode in a current sheet with a sheared flow in a long, thin cylinder. The results show that a hyperbolic secant (sech) flow field will lead to instability of the resistive tearing mode, formation of magnetic islands and rapid release of magnetic energy. The coupling between sheared flow and the tearing mode and interaction between suprathermal instabilities change the degree of shear in the magnetic field (the electric current gradient) and drive the development of the instability. This process may be one of the mechanisms of solar flares.  相似文献   

10.
Strongly nonlinear processes in a two-component plasma with sheared flow, in the low-frequency limit, in comparison with the ion gyro frequency Ωi, and for perturbations propagating perpendicularly to the ambient magnetic field are studied. In the linear domain such a system is prone to the development of instability of the Kelvin–Helmholtz type. In the nonlinear regime this instability can saturate into stationary travelling solutions of the form of vortex chains and tripolar vortices, which are found in this paper.  相似文献   

11.
A self-consistent numerical model of a reconnecting magnetic field configuration similar to that occurring during the main-phase of two-ribbon flares is used to estimate the upflow caused by the fast-mode expansion of the magnetic field moving into the reconnection region. Such an expansion creates a field-aligned pressure gradient which accelerates plasma upward from the chromospheric base of magnetic field lines in the region external to the loops. The numerical results imply that the amount of mass sucked up in this way is even smaller than was previously estimated by Kopp and Pneuman who used a kinematic model. Therefore, some indirect mechanism (such as evaporation), which would probably derive its motive power from the thermal energy generated by the reconnection, is required to explain the large mass upflows inferred from observations.  相似文献   

12.
We discuss the spatial and temporal characteristics of X-ray flares occurring in the active region NOAA2372 from April 6 to 13, 1980. The flares are seen to extend in most cases across the whole active complex, involving several magnetic features. They originate in an intermediate bipole, between the two main sunspots of the active region, where high magnetic shear was detected. A rapid expansion is seen in some cases, in conjunction with the start of the impulsive hard X-ray bursts. We also detect, in the late phases of some of the events, a large soft X-ray structure overlying the whole active region, which also shows up as a noise storm region at metric wavelengths. These large loops cool by heat conduction but, in some cases, Hα condensations seem to appear, probably as a result of magnetic compression and a condensation mode of the thermal instability. The topological aspects of the field configuration are discussed, in the context of flare models invoking magnetic reconnection at the site of the primary energy release. In such a model, the intermediate bipole is the natural site of initial magnetic reconnection, particle acceleration and heating. In one particular case of a flare observed at the limb, we find possible evidence of particle acceleration in a neutral sheet at the boundary between two clearly defined magnetic structures.  相似文献   

13.
H.S. Ji  M.T. Song  X.Q. Li 《Solar physics》2001,198(1):133-148
Solar observations show that magnetic reconnection can occur in the Sun's weakly ionized lower atmosphere (magnetic cancellation, Ellerman bombs and type II white-light flares). Unlike what the usual reconnection models have predicted, such a reconnection is accompanied by temperature enhancements which are less than 10%. To overcome this difficulty, we have reexamined the reconnection in a two-fluid model using a 2D numerical simulation. The numerical solutions demonstrate the following results: (1) Under the influence of Lorentz force, ionized gas carries the magnetic field into a diffusion region where part of the field is annihilated, and the current-sheet scaling laws for the weakly ionized plasma are basically the same as in the fully ionized case. (2) Though the neutral gas is not directly affected by the magnetic field due to frictional forces, its motion is almost the same as the ionized gas except in the region near stagnation point where the streamlines of both species differ appreciably. (3) The pressure of neutrals which governs the distribution of total pressure and temperature varies slightly. So the temperature of the whole domain is nearly uniform in space and constant in time. These results support the idea that magnetic cancellation, Ellerman bombs, and type II white-light flares are due to magnetic reconnection in the Sun's lower atmosphere.  相似文献   

14.
单洁  叶景  蔡强伟  林隽 《天文学报》2021,62(2):14-39
磁重联在宇宙的许多动力学现象中都是非常核心的过程.磁流体动力学(MHD)数值模拟是研究磁重联过程以及相应物理图像的一种很有效的手段.通过不同的参数组合,来研究MHD数值模拟中磁雷诺数和空间分辨率对磁重联率、数值耗散和能谱分布的影响.对得到的数据进行分析后,发现磁雷诺数对磁重联率和能谱分布有一定的影响.磁雷诺数越大,磁重联过程进入非线性阶段所需的特征时间越短,磁重联率就越早发生跃升.磁雷诺数Rm对耗散开始发挥作用的Kolmogorov微观尺度lko有明显影响:Rm越大,lko就越小.研究了磁重联过程中包括数值耗散在内的额外耗散对重联过程的影响.结果表明,撕裂模不稳定性开始之前的额外耗散以纯数值耗散为主,撕裂模不稳定性出现之后,额外耗散出现同步跃升,说明不稳定性导致的湍流明显增强了耗散的效果,相当于在局部湍流区引入了超电阻.能谱分析进一步表明,大尺度电流片的lko完全可能出现在宏观的MHD尺度上.  相似文献   

15.
It is shown that the particle inertia can cause a tearing instability in an electron-positron collisionless plasma with sheared magnetic fields. An approximate analytical expression for the growth rate is obtained. It characterizes the magnetic reconnection timescale in a magnetized electronpositron plasma.  相似文献   

16.
Su  Qing-Rui  Su  Min 《Solar physics》2000,194(1):121-130
The finite element method was used to solve a partial differential equation (magnetostatic equation) for multipolar magnetic regions. It is found that the height of magnetic field lines above the magnetic neutral line of a central strong bipolar magnetic field decreases as the field lines' footpoints approach the neutral line and also with increased magnetic shear. Both the electric current density and plasma pressure in the sheared low-lying loops are high. We suggest that the sheared low-lying loops may store the energies of large coronal mass ejections (CMEs) and filament eruptions. In addition, it is found that a lower pressure area exists above the low-lying loops and that it is similar in morphology to a coronal cavity. Above the lower pressure area there is a higher pressure area, which may be the source of CMEs. In this area magnetic shear leads to magnetic reconnection, which may be the cause of high coronal temperature.  相似文献   

17.
A model of the sheared magnetic field in a coronal loop is used to evaluate the average cross-field suppression of axial thermal conduction. If the energy source is uniform in radius, this can lead to heat-flux reduction by a factor greater than three. When the source is annular, in a region of radius where the current density and shear are peaked, the effect can be significantly larger. In one extreme case, however, in which magnetic tearing provides the heating in a very narrow layer, the spatial resonance of the source excitation in a long loop leads to approximately axial conduction.  相似文献   

18.
We employ a 2 1/2-dimensional reconnection model to analyse different aspects of the energy release in two-ribbon flares. In particular, we investigate in which way the systematic change of inflow region variables, associated with the vertical elongation of current sheet, affects the flare evolution. It is assumed that as the transversal magnetic field decreases, the ambient plasma-to-magnetic pressure ratio increases, and the reconnection rate diminishes. As the transversal field decreases due to the arcade stretching, the energy release enhances and the temperature rises. Furthermore, the magnetosonic Mach number of the reconnection outflow increases, providing the formation of fast mode standing shocks above the flare loops and below the erupting flux rope. Eventually, in the limit of a very small transversal field the reconnection becomes turbulent due to a highly non-linear response of the system to small fluctuations of the transversal field. The turbulence results in the energy release fragmentation which increases the release efficiency, and is likely to be responsible for the impulsive phase of the flare. On the other hand, as the current sheet stretches to larger heights, the ambient plasma-to-magnetic pressure ratio increases which causes a gradual decrease of the reconnection rate, energy release rate, and temperature in the late phase of flare. The described magnetohydrodynamical changes affect also the electron distribution function in space and time. At large reconnection rates (impulsive phase of the flare) the ratio of the inflow-to-outflow magnetic field strength is much smaller than at lower reconnection rates (late phase of the flare), i.e., the corresponding loss-cone angle becomes narrower. Consequently, in the impulsive phase a larger fraction of energized electrons can escape from the current sheet downwards to the chromosphere and upwards into the corona – the dominant flare features are the foot-point hard X-ray sources and type III radio bursts. On the other hand, at low reconnection rates, more particles stay trapped in the outflow region, and the thermal conduction flux becomes strongly reduced. As a result, a superhot loop-top, and above-the-loop plasma appears, as sometimes observed, to be a dominant feature of the gradual phase.  相似文献   

19.
Wang  S.  Liu  Y. F.  Zheng  H. N. 《Solar physics》1997,173(2):409-426
Satellite observations of the heliospheric current sheet indicate that the internal structure of sector boundaries is a very complex structure with many directional discontinuities in the magnetic field. This implies that the heliospheric current sheet is not a single surface but a constantly changing layer with a varying number of current sheets. In this paper, we investigate magnetic reconnection caused by the resistive tearing mode instability in non-periodic multiple current sheets by using two-dimensional magnetohydrodynamic simulation. The results show that it is complex unsteady magnetic reconnection. Accompanying the nonlinear development of the tearing mode, the width of each magnetic island in multiple current sheets increases with time, and this leads to new magnetic reconnection. At the same time, the width of each current sheet increases, and the current intensity decreases gradually. Finally, the reverse current disappears, and a big magnetic island is formed in the central region. This process is faster when the separation between the current sheets is smaller. We suggest that the occurrence of multiple directional discontinuities observed at sector boundary crossings in the heliosphere may be associated with the magnetic islands and plasmoids caused by magnetic reconnection in multiple current sheets.  相似文献   

20.
Shear mixing is believed to be the main mechanism to provide extra mixing in stellar interiors. We present results of three-dimensional (3D) simulations of the magnetohydrodynamic Kelvin–Helmholtz instability in a stratified shear layer. The magnetic field is taken to be uniform and parallel to the shear flow. We describe the evolution of the fluid flow and the magnetic field for a range of initial conditions. In particular, we investigate how the mixing rate of the fluid depends on the Richardson number and the magnetic field strength. It is found that the magnetic field can enhance as well as suppress mixing. Moreover, we have performed two-dimensional (2D) simulations and discuss some interesting differences between the 2D and 3D results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号