首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Up to now, only a very small number of dwarf novae have been studied during their outburst state (∼30 per cent in the Northern hemisphere). In this paper we present the first comprehensive atlas of outburst spectra of dwarf novae. We study possible correlations between the emission and absorption lines seen in the spectra and some fundamental parameters of the binaries. We find that out of the 48 spectra presented, 12 systems apart from IP Peg show strong He  ii in emission: SS Aur, HL CMa, TU Crt, EM Cyg, SS Cyg, EX Dra, U Gem, HX Peg, GK Per, KT Per, V893 Sco, IY UMa, and seven others less prominently: FO And, V542 Cyg, B  i Ori, TY Psc, VZ Pyx, ER UMa and SS UMi. We conclude that these systems are good targets for finding spiral structure in their accretion discs during outburst if the models of Smak and Ogilvie are correct. This is confirmed by the fact that hints of spiral asymmetries have already been found in the discs of SS Cyg, EX Dra and U Gem.  相似文献   

2.
We present spectroscopy of the dwarf nova IP Pegasi taken during two consecutive nights, 5 and 6 d after the start of an outburst. Even this late in the outburst, Doppler maps show marked spiral structure in the accretion disc, at least as strongly as seen earlier in other outbursts of IP Peg. The spiral shocks are present on both nights with no diminution in strength from one night to the next. The light curves of the lines show an offset to earlier phases, with the mid-eclipse of the emission lines displaced to phases between −0.015±0.001 and −0.045±0.009. This cannot be explained by the presence of the accretion shocks. As well as the fixed spiral pattern, the disc shows strong flaring in the Balmer and He  ii   λ 4686-Å lines. Irradiation-induced emission is seen from the companion star in the Balmer, He  i , He  ii , Mg  ii , C  ii , and other lines. The emission is located near the poles of the companion star, suggesting that the accretion disc shields the companion star substantially and thus has an effective H R of order 0.2 at extreme-ultraviolet (EUV) wavelengths. The Balmer emission is distinctly broader than the other lines, consistent with non-Doppler broadening.  相似文献   

3.
We present a comprehensive photometric data set taken over the entire outburst of the eclipsing dwarf nova IP Peg in 1997 September/October. Analysis of the light curves taken over the long rise to the peak-of-outburst shows conclusively that the outburst started near the centre of the disc and moved outwards. This is the first data set that spatially resolves such an outburst. The data set is consistent with the idea that long rise times are indicative of such 'inside-out' outbursts. We show how the thickness and the radius of the disc, along with the mass transfer rate, change over the whole outburst. In addition, we show evidence of the secondary and the irradiation thereof. We discuss the possibility of spiral shocks in the disc; however, we find no conclusive evidence of their existence in this data set.  相似文献   

4.
We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the simplified flux vector splitting (SFS) finite volume method. In our calculations, the gas is assumed to be ideal with γ =1.01, 1.05, 1.1 and 1.2 . The mass ratio of the mass-losing star to the mass-accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller γ is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in a somewhat weaker sense. Mach numbers in our discs are less than 10. These values are lower than the values in observed accretion discs in close binary systems.
Recently, Steeghs, Harlaftis & Horne found the first convincing evidence for spiral structure in the accretion disc of the eclipsing dwarf nova binary IP Pegasi, using the technique known as Doppler tomography. Although the Mach numbers in present calculations are rather low, we may claim that the spiral structure that we discovered in earlier numerical simulations is now found observationally.  相似文献   

5.
We consider the implications of the detection of spiral structure in the accretion disc of the binary IP Pegasi. We use numerical simulations of the development of a disc outburst to construct predicted Doppler tomograms, which are found to be in close agreement with the observations if the spiral pattern arises as a transient feature when the disc expands viscously at the start of the outburst. The good agreement of such viscous disc simulations with the data is consistent with models in which most of the angular momentum transport in the disc originates in internal stresses rather than globally excited waves or shocks. Future detailed observations of the development of transient spiral features offer the potential to measure the dependence of the disc viscosity on the local physical conditions in the disc.  相似文献   

6.
We use the grid of hydrodynamic accretion disc calculations of Stehle to construct orbital phase‐dependent emission‐line profiles of thin discs carrying spiral density waves. The observational signatures of spiral waves are explored to establish the feasibility of detecting spiral waves in cataclysmic variable discs using prominent emission lines in the visible range of the spectrum. For high Mach number accretion discs ( M v φ c s≃ 15 – 30), we find that the spiral shock arms are so tightly wound that they leave few obvious fingerprints in the emission lines. Only a minor variation of the double peak separation in the line profile at a level of ∼8 per cent is produced. For accretion discs in outburst ( M ≃ 5 – 20) however, the lines are dominated by the emission from an m =2 spiral pattern in the disc. We show that reliable Doppler tomograms of spiral shock patterns can be reconstructed provided that a signal‐to‐noise ratio of at least 15, a wavelength resolution of ∼80 km s−1 and a time resolution of ∼50 spectra per binary orbit are achieved. We confirm that the observed spiral pattern in the disc of IP Pegasi can be reproduced by tidal density waves in the accretion disc and demands the presence of a large, hot disc, at least in the early outburst stages.  相似文献   

7.
We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (   M 1, M 2  , i and γ) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of γ derived from circular orbit fits to radial velocity variations.  相似文献   

8.
We study numerically the interaction of the infalling gas stream and the rim of the accretion disc in cataclysmic variables. The simulations were performed with a smoothed particle hydrodynamics scheme with high spatial resolution. Parameters of the systems AM CVn, OY Car, DQ Her, U Gem and IP Peg were used for the simulations. The simulations cover a wide range of orbital periods, mass ratios and mass transfer rates, as well as different thermal states of the accretion disc. The main result of this study is that the accretion stream is not stopped at the impact region (the bright spot at the outer rim of the disc). In fact, after undergoing the shock interaction, most of the matter is deflected vertically and flows in a more or less diffuse stream to inner parts of the disc, hitting the disc surface close to the circularization radius at orbital phase 0.5. This is a common feature in all systems for all simulated parameters. This stream overflow can cause the X-ray absorption dips observed in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) around orbital phase 0.7, if the inclination is at least 65°. Under certain circumstances, namely a sudden increase of the mass transfer rate from the secondary or a rather small disc, parts of the overflowing stream bounce off the disc surface after hitting it at orbital phase ≈0.5. Another absorption region can be expected around orbital phase 0.2.
In our simulations most of the infalling matter reaches the inner disc very quickly. This must alter the evolution of the quiescent disc and the outburst behaviour considerably compared with purely viscous transport of the material through the disc from the outer rim, and therefore should be taken into account in dwarf nova outburst cycle calculations. To our knowledge, the consequences of such a massive stream overflow for the dwarf nova outburst cycle have not been considered yet.  相似文献   

9.
We present a time-resolved differential photometric study and time series analysis of the nova-like cataclysmic variable star LQ Peg. We discover three periodicities in the photometry, one with a period of 3.42 ± 0.03 h, and another with a period of 56.8 ± 0.01 h. We interpret these to be the apsidal superhump and precessional periods of the accretion disk, respectively, and predict that the orbital period of LQ Peg is 3.22 ± 0.03 h. The third periodicity, with a period of 41.3 ± 0.01 h, we interpret to be the nodal precessional period of the accretion disk. We also report a flare that lasted four minutes and had an energy in visible light of (1.2 ± 0.3) × 1036 ergs, or 104-5 times more energetic than the largest solar flares, comparable to the most energetic visible-light stellar flares known. We calculate the absolute magnitude of LQ Peg to be MJ = 4.78 ± 0.54, and its distance to be 800 ± 200 pc.  相似文献   

10.
We present red spectra in the region ∼ λ 7000–8300 Å of the eclipsing dwarf nova IP Peg, with simultaneous narrow-band photometry centred at 7322 Å. We show that by placing a second star on the slit we can correct for the telluric absorption bands which have hitherto made the TiO features from the secondary star unusable. We use these TiO features to carry out a radial velocity study of the secondary star, and find this gives an improvement in the signal-to-noise ratio of a factor of 2 compared with using the Na  i doublet. In contrast with previous results, we find no apparent ellipticity in the radial velocity curve. As a result we revise the semi-amplitude to K 2=331.3±5.8 km s−1, and thus the primary and secondary star masses to 1.05-0.07+0.14 M⊙ and 0.33-0.05+0.14 M⊙ respectively. Although this is the lowest mass yet derived for the secondary star, it is still overmassive for its observed spectral type. However, the revised mass and radius bring IP Peg into line with other cataclysmic variables in the mass–radius–period relationships.
By fitting the phase-resolved spectra around the TiO bands to a mean spectrum, we attempt to isolate the light curve of the secondary star. The resulting light curve has marked deviations from the expected ellipsoidal shape. The largest difference is at phase 0.5, and can be explained as an eclipse of the secondary star by the disc, indicating that the disc is optically thick when viewed at high inclination angles.  相似文献   

11.
We present observations of dwarf nova oscillations (DNOs), longer-period dwarf nova oscillations (lpDNOs), and quasi-periodic oscillations (QPOs) in 13 cataclysmic variable stars. In the six systems, WW Cet, BP CrA, BR Lup, HP Nor, AG Hya and V1193 Ori, rapid, quasi-coherent oscillations are detected for the first time. For the remainder of the systems discussed, we have observed more classes of oscillations, in addition to the rapid oscillations they were already known to display, or previously unknown aspects of the behaviour of the oscillations. The period of a QPO in RU Peg is seen to change by 84 per cent over the 10 nights of the decline from outburst – the largest evolution of a QPO period observed to date. A period–luminosity relation similar to the relation that has long been known to apply to DNOs is found for lpDNOs in X Leo; this is the first clear case of the lpDNO frequency scaling with accretion luminosity. WX Hyi and V893 Sco are added to the small list of dwarf novae that have shown oscillations in quiescence.  相似文献   

12.
We present high-time-resolution spectroscopy of the non-eclipsing old nova V533 Herculis (N Her 1963). It is the second nova remnant affected by the 'SW Sex syndrome'. A modulation of the equivalent width of the emission lines with a period of 23.33 min has been detected. This, together with the strong He ii λ4686 emission characteristic of magnetic systems, leads us to link this period to the spin of a magnetic white dwarf. Similar flaring activity has been recorded in other SW Sex stars, namely, the old nova BT Mon, LS Peg and DW UMa, supporting the idea of these systems being magnetic accretors. Stationary emission features are also observed in the Balmer lines, which we attribute to the ejected nova shell.  相似文献   

13.
The excitation of spiral waves by an external perturbation in a disc deposits angular momentum in the vicinity of the corotation resonance (the radius where the speed of a rotating pattern matches the local rotation rate). We use matched asymptotic expansions to derive a reduced model that captures non-linear dynamics of the resulting torque and fluid motions. The model is similar to that derived for forced Rossby wave critical layers in geophysical fluid dynamics. Using the model we explore the saturation of the corotation torque, which occurs when the background potential (specific) vorticity is redistributed by the disturbance. We also consider the effects of dissipation. If there is a radial transport of potential vorticity, the corotation torque does not saturate. The main application is to the creation, growth and migration of protoplanets within discs like the primordial solar nebula. The disturbance also nucleates vortices in the vicinity of corotation, which may spark further epochs of planet formation.  相似文献   

14.
We present a numerical model for the evolution of a protostellar disc that has formed self-consistently from the collapse of a molecular cloud core. The global evolution of the disc is followed for several million years after its formation. The capture of a wide range of spatial and temporal scales is made possible by use of the thin-disc approximation. We focus on the role of gravitational torques in transporting mass inward and angular momentum outward during different evolutionary phases of a protostellar disc with disc-to-star mass ratio of order 0.1. In the early phase, when the infall of matter from the surrounding envelope is substantial, mass is transported inward by the gravitational torques from spiral arms that are a manifestation of the envelope-induced gravitational instability in the disc. In the late phase, when the gas reservoir of the envelope is depleted, the distinct spiral structure is replaced by ongoing irregular non-axisymmetric density perturbations. The amplitude of these density perturbations decreases with time, though this process is moderated by swing amplification aided by the existence of the disc's sharp outer edge. Our global modelling of the protostellar disc reveals that there is typically a residual non-zero gravitational torque from these density perturbations, i.e. their effects do not exactly cancel out in each region. In particular, the net gravitational torque in the inner disc tends to be negative during first several million years of the evolution, while the outer disc has a net positive gravitational torque. Our global model of a self-consistently formed disc shows that it is also self-regulated in the late phase, so that it is near the Toomre stability limit, with a near-uniform Toomre parameter Q ≈ 1.5–2.0. Since the disc also has near-Keplerian rotation, and comparatively weak temperature variation, it maintains a near-power-law surface density profile proportional to r −3/2.  相似文献   

15.
We present time-resolved spectroscopy and circular spectropolarimetry of the SW Sex star RX J1643.7+3402. We find significant polarization levels exhibiting a variability at a period of  19.38 ± 0.39  min. In addition, emission-line flaring is found predominantly at twice the polarimetric period. These two findings are strong evidences in favour of the presence of a magnetic white dwarf in the system. We interpret the measured periodicities in the context of our magnetic accretion model for SW Sex stars. In contrast with LS Pegasi – the first SW Sex star discovered to have modulated circular polarization – the polarization in RX J1643.7+3402 is suggested to vary at  2(ω−Ω)  , while the emission lines flare at  (ω−Ω)  . However, a  2ω/ω  interpretation cannot be ruled out. Together with LS Peg and V795 Her, RX J1643.7+3402 is the third SW Sex star known to exhibit modulated circular polarization.  相似文献   

16.
We present a perturbation theory for studying the instabilities of non-axisymmetric gaseous discs. We perturb the dynamical equations of self-gravitating fluids in the vicinity of a non-axisymmetric equilibrium, and expand the perturbed physical quantities in terms of a complete basis set and a small non-axisymmetry parameter ε. We then derive a linear eigenvalue problem in matrix form, and determine the pattern speed, growth rate and mode shapes of the first three unstable modes. In non-axisymmetric discs, the amplitude and the phase angle of travelling waves are functions of both the radius R and the azimuthal angle φ. This is due to the interaction of different wave components in the response spectrum. We demonstrate that wave interaction in unstable discs, with small initial asymmetries, can develop dense clumps during the phase of exponential growth. Local clumps, which occur on the major spiral arms, can constitute seeds of gas giant planets in accretion discs.  相似文献   

17.
The cataclysmic variable V378 Peg is known since 15 years. Although V378 Peg is a rather bright star (14 mag), it underwent no detailed study. We performed photometric observations of V378 Peg during 75 h with the goal to detect periodic brightness variations. The obtained light-curves clearly showed changes with a period of about 3 h. The Fourier analysis reveals that this oscillation occurs with a period of 3.238 h and a semiamplitude of 0.07 mag. Although the detected oscillation possesses certain coherence, it appears to have a slightly unstable period or phase. Therefore, the detected period cannot be the orbital period of the V378 Peg system. Because such instability is typical of superhumps, we must consider the detected oscillation as superhumps. Furthermore, V378 Peg shows no outbursts and has to be a nova-like variable rather than a dwarf nova. Hence, the detected superhumps have to be regarded as permanent superhumps. Because superhump periods in cataclysmic variables are close to orbital periods, we can find the place of V378 Peg in the orbital period distribution of cataclysmic variables. V378 Peg is a permanent superhump system above the upper edge of the 2-3 h period gap in the orbital period distribution.  相似文献   

18.
Linear transient phenomena induced by flow non-normality in thin self-gravitating astrophysical discs are studied using the shearing sheet approximation. The considered system includes two modes of perturbations: vortex and (spiral density) wave. It is shown that self-gravity considerably alters the vortex mode dynamics; its transient (swing) growth may be several orders of magnitude stronger than in the non-self-gravitating case and two to three times larger than the transient growth of the wave mode. Based on this finding, we comment on the role of vortex mode perturbations in a gravitoturbulent state. We also describe the linear coupling of the perturbation modes, caused by the differential character of disc rotation. The coupling is asymmetric: vortex mode perturbations are able to excite wave mode perturbations, but not vice versa. This asymmetric coupling lends additional significance to the vortex mode as a participant in spiral density waves and shock manifestations in astrophysical discs.  相似文献   

19.
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime (∼1–5000 km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of 2 in radius in ∼1000 yr), although typical random orbital velocities are of the order of one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modelled do not permit us to discern any net direction of planetesimal migration. Our main conclusion is that the high eccentricities (∼0.1) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regime. Thus if , as recently argued by Rice et al., the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), the planetesimals thus produced would not be able to grow collisionally until the disc ceases to be self-gravitating. It is unclear, however, given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star.  相似文献   

20.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号