首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have concluded that better use of scientific information could improve the quality of coastal and estuarine environmental management. Approaches for effecting such a change include ecosystem-based, integrated, and adaptive management, but such basic re-orientation of estuarine and coastal management has proved difficult to achieve. Even environmental indicators, seemingly straightforward ways of injecting scientific information into decision making, have achieved broad on-the-ground use in relatively few instances—principally the largest estuary management programs. A conceptual framework useful for examining environmental management systems affecting the five PNCERS (Pacific Northwest coastal Ecosystems Regional Study) estuaries conceives of environmental managers, researchers, and interested and affected parties in the public as interacting through the multi-layered institutional arrangements that currently promote the utilization, management, or protection of coastal and estuarine resources. Considerable variation exists in the approach and effectiveness of the region's environmental management organizations. Interaction between science and management in the region appears to be limited to an extent by high transaction costs; a cultural divide between environmental scientists and environmental managers is perceived by members of both groups who work with the PNCERS estuaries as inhibiting communications between them. Mechanisms that both groups identify as useful for improving the flow of information between science and management are little used, perhaps as a result. The two groups have very different patterns of information dissemination and acquisition, and though both chose agency archives and databases as their top methods for disseminating information, neither group relies much on these vehicles for information they seek. Both residents' and practitioners' perceptions of threats to the PNCERS estuaries show patterns of estuary-to-estuary variation. One theme that emerges is that problems associated with poor land management in adjacent uplands are common to most of these estuaries, potentially providing a sense of commonality through which a more regional approach to estuary management could emerge. A common set of estuarine environmental indicators implemented for all estuaries could help instigate such a regional approach, but resource constraints, especially at the local level, will have to be overcome for that to occur. There is currently substantial lack of common vision among coastal practitioners as to the purpose and desirability of indicators, and relatively little experience or knowledge of their use, particularly at the local level. Use of estuarine science in the management of these estuaries appears to be greatest during periods in which the largest programmatic shifts in environmental management approaches occur, an observation consistent with other studies that have concluded that the use of environmental science in environmental management tends to be episodic.  相似文献   

2.
Deltaic and estuarine environments have been, and continue to be, some of the most rapidly changing environments. Those associated with the Sunda shelf generally receive large volumes of sediment and were characterised by a diverse and productive vegetation before much of it was cleared and converted for agriculture, silviculture or urban development. By contrast estuaries in northern Australia receive far less sediment supply, and record a much less modified pattern of landform change during the Holocene. Three periods of change are discussed: first, the long-term geological development and response of deltaic–estuarine plains to eustatic cycles of sea-level change, particularly postglacial sea-level rise to present; second, Holocene development of deltaic–estuarine environments, dominated by patterns of coastal progradation and distributary migration, under relatively stable sea level; and third, the impact of human modifications. These observations provide a framework within which response of the deltaic–estuarine environments to future, anticipated environmental change can be assessed.  相似文献   

3.
Spatial patterns of environmental processes are intrinsic yet complex components of estuaries. Spatial characterization of environmental gradients is a necessary step to better understand and classify estuarine environments. A geographic information system is developed to analyze the major abiotic environmental processes, to evaluate accuracy and spatial uncertainty, and to analyze potential zonation within the choked coastal lagoon of Chincoteague Bay in Maryland and Virginia, USA. Spatially extensive grid-based models of environmental gradients are constructed from existing geospatial and environmental databases, including tidal prism, bathymetry, salinity, wave exposure, and Secchi disk depth. Integration of wetland boundaries and bathymetric data provide for full basin analysis of flushing and tidal prism. Multivariate Principal Components Analysis demonstrates the covariation among gradients and provides an empirical approach to mapping multidimensional zones within the lagoon. The project documents the development of an estuarine geographic information system that can be used to analyze and compare estuarine environments and provide data for environmental decision making.  相似文献   

4.
This paper explores social, and economic aspects of coastal communities crucial to the management of estuaries in the Pacific Northwest. These aspects include the changing demographics and economies of coastal communities, and the public perceptions, attitudes, and values pertaining to estuarine ecosystems. Information from Willapa Bay and Grays Harbor in Washington and Tillamook, Yaquina, and Coos Bays in Oregon shows that the coastal communities are growing more slowly than the states overall., that the populations are relatively old, and that, although the local economies continue to rely on them, the extractive natural resource industries (fishing, aquaculture, agriculture, forest products) are declining in importance relative to tourism, recreation, and retirement industries. These trends suggest that human uses of the estuaries are changing in character, and altering the management problems. Coastal residents choose to live in these communities to enjoy the views and scenery, to experience rural living, to be near the ocean, and to recreate outdoors. People express coherent perceptions of risks to the estuaries, especially the threats of declining fish habitats, oil spills, shoreline development, invasive species, and logging in upland areas> Residential land values are enhanced by the presence of wetlands and forests and are diminished by the presence of hazardous waste sites. We conclude that, if recent trends in population age structure, income sources, and employment status continue, public attitudes and values will move towards stronger environmental protection. Because ecosystem management involves local public participation and collaboration, estuarine managers will be faced with both increased demands and opportunities.  相似文献   

5.
Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4 cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.  相似文献   

6.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

7.
Nitrogen (N) is one of the primary nutrients required to build biomass and is therefore in high demand in aquatic ecosystems. Estuaries, however, are frequently inundated with high concentrations of anthropogenic nitrogen, which can lead to substantially degraded water quality. Understanding drivers of biogeochemical N cycling rates and the microbial communities responsible for these processes is critical for understanding how estuaries are responding to human development. Estuaries are notoriously complex ecosystems: not only do individual estuaries by definition encompass gradients of salinity and other changing environmental conditions, but differences in physical parameters (e.g., bathymetry, hydrodynamics, tidal flushing) lead to a tremendous amount of variability in estuarine processes between ecosystems, as well. Here, we review the current knowledge of N cycling processes in estuaries carried out by bacteria and archaea, including both biogeochemical rate measurements and molecular characterizations of N cycling microbial communities. Particular attention is focused on identifying key environmental factors associated with distinct biogeochemical or microbial regimes across numerous estuaries. Additionally, we describe novel metabolisms or organisms that have recently been discovered but have not yet been fully explored in estuaries to date. While the majority of research has been conducted in the benthos, we also describe data from estuarine water columns. Understanding both the common patterns and the differences between estuaries has important implications for how these critical ecosystems respond to changing environmental conditions.  相似文献   

8.
A buried archaeological site at Tecolote Canyon provides an ideal case study for relating past human land use patterns to changes in coastal paleogeography. Postglacial sea level transgression, erosion, and other marine and fluvial processes form the context for examining two deeply buried archaeological components excavated at CA‐SBA‐72. Archaeological shellfish assemblages provide proxy data for evaluating the evolution of local marine environments. Pismo clams dominate shellfish assemblages dated to 5800 cal yr B.P., suggesting the presence of a broad and sandy, high‐energy beach environment. At 5500 cal yr B.P., the almost exclusive use of California mussels by humans signals the development of rocky intertidal habitats. During the late Holocene, estuarine species dominate the marine mollusk assemblages at CA‐SBA‐72, reflecting the development of local estuarine conditions or trade with nearby Goleta Slough villages. The buried components at Tecolote Canyon appear to have served as temporary camps for shellfish harvesting and processing. While general changes in coastal paleogeography and human subsistence have been reconstructed for the Santa Barbara Coast, high resolution ecological data from Tecolote Canyon suggest that Native peoples also adapted to localized and shorter‐term shifts in intertidal habitats, changes not evident in most larger or more disturbed surface sites in the region. Linking these changes with shifts in human land use patterns highlights the interaction between humans and a dynamic coastal system. These data demonstrate the importance of small, buried sites in understanding the full spectrum of human subsistence and settlement choices and local environmental change. © 2004 Wiley Periodicals, Inc.  相似文献   

9.
Seasonal succession and composition of both attached and free-living bacterial communities were studied in subtropical estuarine and coastal waters with contrasting hydrographic conditions. A higher abundance of attached bacteria was recovered in the estuarine waters containing high concentrations of dissolved organic carbon (DOC) resulting from the freshwater discharge in the adjacent Pearl River, and Proteobacteria, including ??-, ??-, and ??-groups, predominated the attached community at both stations. Free-living bacterial communities at both stations showed higher diversity and lower seasonality than their attached counterparts, and ??-Proteobacteria accounted for the highest proportion at both stations. Redundancy analysis (RDA) demonstrated that, in addition to the obvious temperature effects, DOC and microphytoplankton (>20???m Chl a) drive the temporal variation of attached bacteria at the estuarine and coastal stations, respectively. On the other hand, picophytoplankton (<2???m Chl a) and dissolved oxygen concentration explained most of the free-living bacterial community succession at the estuarine station, while those at the coastal station were associated with micro- and picoplankton (Chl a fractions of <2 and >20???m). These findings suggest that temperature and bottom?Cup effects play a more important role for the spatial?Ctemporal variations of both attached and free-living bacterial communities in the subtropical estuarine and coastal waters.  相似文献   

10.
Disturbances influence ecological communities over a wide range of scales. We investigated the effects of localized hypoxic disturbances on an estuarine fish assemblage at several spatial (m2 and 10s km2) and temporal (days, seasons, years) scales in a multivariate framework (temperature, salinity, depth, dissolved oxygen). We examined whether seasons, years) scales in a multivariate framework (temperature, salinity, depth, dissolved oxygen). We examined whether there were consistent changes in fish and crustacean estuarine assemblage characteristics along environmental gradients and whether these relationships were altered by hypoxic disturbances. We also investigated at what scale dissolved oxygen concentration may be influencing the structure of motile estuarine assemblages and whether the size of the hypoxic zone altered its effects on the estuarine assemblage. Hypoxic disturbances altered fish and crustacean assemblages along the depth gradients that were present during well-oxygenated periods. Species diversity, richness, and catch rates were lower in hypoxic patches than in oxygenated areas. Dissolved oxygen concentration remained an important explanatory variable for patch-level assemblage dissimilarity, species richness, and diversity when data were aggregated across seasons. When we examined the data at a larger scale, by aggregating information across the study area, we did not detect influences of hypoxia on assemblage structure. Fish moved out of local hypoxic zones, but remained within the estuary even in years with extensive hypoxia. There was no effect of size of the hypoxic distrubance on whether organisms responded to hypoxia or on diversity or richness of the study site. These results suggest that these local disturbances play an important role in structuring motile species assemblages at a patch-level within an estuary, but regional factors such as recruitment and migration are important in influencing species assemblages for the entire estuary over months and years.  相似文献   

11.
The detection of long-term shifts in species composition and spatial structuring of aquatic communities may be obscured by high levels of interannual variation. Estuarine fish communities are likely to exhibit high levels of variation owing to the influence of riverine forcing and the importance of anadromous and transient species, whose abundances may not be locally controlled. We describe patterns of interannual variation and long-term shifts in the nearshore fish community of the mesohaline Hudson River estuary based on 21 yr of beach seine sampling conducted annually between late August and mid November. Of the 60 species encountered, the most abundant were Atlantic silversides (Menidia menidia), striped bass (Morone saxatilis), white perch (Morone americana), American shad (Alosa sapidissima), and blueback herring (Alosa aestivalis). Relationships between annual community composition and seasonal flow and temperature regimes were examined with canonical correspondence analysis. Annual variation was most closely correlated with river flows in the 3-mo period preceding fish sampling, indicating a persistent effect of environmental conditions on community structure. Despite significant interannual variation in composition, longer-term trends in community structure were observed. These included declines in catch rates of freshwater and estuarine species and a dramatic increase in the catch of Atlantic silversides, an annual marine species. Associated with these changes were declines in community diversity and increased compositional variation. These results indicate that analyses of temporal changes in community structure need to account for the multiple time scales under which forcing factors and community composition vary.  相似文献   

12.
Many estuarine and coastal marine ecosystems have increasingly experienced degradation caused by multiple stressors. Anthropogenic pressures alter natural ecosystems and the ecosystems are not considered to have recovered unless secondary succession has returned the ecosystem to the pre-existing condition or state. However, depending upon the scales of time, space and intensity of anthropogenic disturbance, return along the historic trajectory of the ecosystem may: (1) follow natural restoration though secondary succession; (2) be re-directed through ecological restoration, or (3) be unattainable. In order to address the gaps in knowledge about restoration and recovery of estuarine and coastal ecosystems, this special feature includes the present overview and other contributions to provide a synthesis of our knowledge about recovery patterns, rates and restoration effectiveness. From the 51 examples collated in this contribution, we refine the recovery from the list of stressors into six recovery mechanisms: (1) recovery from sediment modification, which includes all aspects of dredging and disposal; (2) recovery by complete removal of stressors limiting natural ecosystem processes, which includes tidal marsh and inundation restoration; (3) recovery by speed of organic degradation, which includes oil discharge, fish farm wastes, sewage disposal, and paper mill waste; (4) recovery from persistent pollutants, which includes chemical discharges, such as TBT; (5) recovery from excessive biological removal, related to fisheries and (6) recovery from hydrological and morphological modification. Drawing upon experience both from these many examples and from an example of one comprehensive study, we show that although in some cases recovery can take <5 years, especially for the short-lived and high-turnover biological components, full recovery of coastal marine and estuarine ecosystems from over a century of degradation can take a minimum of 15–25 years for attainment of the original biotic composition and diversity may lag far beyond that period.  相似文献   

13.
Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time.  相似文献   

14.
During the last two decades, there has been growing interest in the integration of existing ideas and data to produce new synthetic models and hypotheses leading to discovery and advancement in estuarine and coastal science. This essay offers an integrated definition of what is meant by synthesis research and discusses its importance for exploiting the rapid expansion of information availability and for addressing increasingly complex environmental problems. Approaches and methods that have been used in published synthetic coastal research are explored and a list of essential steps is developed to provide a foundation for conducting synthetic research. Five categories of methods used widely in coastal synthesis studies are identified: (1) comparative cross-system analysis, (2) analysis of time series data, (3) balance of cross-boundary fluxes, (4) system-specific simulation modeling, and (5) general systems simulation modeling. In addition, diverse examples are used to illustrate how these methods have been applied in previous studies. We discuss the urgent need for developing curricula for classroom and experiential teaching of synthesis in coastal science to undergraduate and graduate students, and we consider the societal importance of synthetic research to support coastal resource management and policy development. Finally, we briefly discuss the crucial challenges for future growth and development of synthetic approaches to estuarine and coastal research.  相似文献   

15.
Establishing links between migration patterns and trophic dynamics is paramount to ecological studies investigating the functional role habitats provide to resident and transient species. Natural tags in fishes, such as otolith chemistry and tissue stable isotopes, can help reconstruct previous environmental and dietary histories, although these approaches are rarely combined. A novel multiproxy natural tag approach was developed to estimate immigration patterns of juvenile Atlantic croaker Micropogonias undulatus, across contrasting salinity gradients in three subtropical estuaries of the western Gulf of Mexico. Juvenile young-of-year Atlantic croaker were collected along a latitudinal gradient that included positive, neutral, and negative estuaries, based on physicochemical (temperature, salinity, dissolved element) and isotopic (δ15N and δ13C) parameters. Otolith elemental chronologies of Sr/Ca and Ba/Ca were used to classify migratory types within each estuary, while tissue-specific isotope ratios revealed time since recent (liver~weeks) and longer term (muscle~months) diet shifts. Nitrogen isotopes in both liver and muscle tissues were highly correlated, suggesting tissue equilibrium and estuarine residence of at least 3 months, with geographic δ15N gradients reflecting the magnitude of anthropogenic nutrient enrichment within each estuary. Differences in isotopic equilibrium of muscle-liver δ13C values and variation in marginal edge otolith Sr/Ca and Ba/Ca suggested recent shifts in carbon source and habitat utilization, reflecting individualized movement across seascapes and connectivity of habitat mosaics. The multiproxy approach presented here identified diverse migration patterns and linked feeding and movement on regional (inter-estuary), local (intra-estuary), and individual scales to improve our understanding of habitat function across estuarine gradients.  相似文献   

16.
Four short core samples were collected from the creek, estuarine regions of southeast (SE) coast of India affected by the 2004 Asian Tsunami. The study is aimed to signify the importance of ostracoda species in identifying major natural events (e.g. Tsunamis) in the coastal regions. The presence of many marine ostracoda species in the beach areas and the comparative studies with earlier reports from SE coast indicate that these species were brought by the high-energy tsunami waves. The depositional feature of ostracoda species in the beach and estuarine region also infers on the nature and force of tsunami waves in a particular region. The results clearly support that microfossils can be used to identify the major natural events close to coastal regions.  相似文献   

17.
Salinity is an important determinant of estuarine faunal composition; previous studies, however, have indicated conflicting accounts of continuous vs. relatively rapid change in community structure at certain salinities from geographically distinct estuaries. This study uses a large fisheries monitoring database (n?>?5,000 samples) to explore evidence for estuarine salinity zonation by nekton in the lower St. Johns River estuary (LSJR). There was little evidence to support the presence of estuarine salinity zones except at the extremes of the salinity gradient (i.e., 0.1?C1.0 and 34?C39). The LSJR estuarine nekton community exhibits progressively slow ecological change throughout most of the salinity gradient with rapid change at the interfaces with fresh and marine waters??an ecoline bounded by ecotones. This study affirms the rapid change that occurs at the extremes of the salinity spectrum in certain estuaries and is relevant to efforts to manage surface water resources and estuarine ecosystems. Given the disparity in the results of the studies examining biological salinity zones in estuaries, it would be wise to have, at minimum, a regional understanding of how communities are structured along the gradient from freshwater to marine.  相似文献   

18.
区域研究:全球变化研究的重要途径   总被引:7,自引:1,他引:7  
区域研究是全球变化研究的重要途径。国际上南部非洲、南亚、东亚、东南亚4个地区及若干重大区域研究项目如 LBA、AMMA、MAIRS及ProMed等典型案例研究表明:区域研究是全球变化研究的基础,区域的实验、模拟、分析是全球环境变化研究的有效方法。区域研究应关注:陆地表面过程、海岸带的陆—海相互作用过程、区域气候变化过程等关键过程对全球变化的响应及作用;区域边缘现象、阈值与突变问题;区域人类活动对全球变化的有序适应等。有必要制订国际区域研究计划,实施地球系统的区域观测,建立区域研究的集成新方法、区域实验与尺度转换方法,建立基于数理基础的区域地球系统模型和数值模拟等新方法。  相似文献   

19.
Spatial patterns of estuarine biota suggest that some nearshore ecosystems are functionally linked to interacting processes of the ocean, watershed, and coastal geomorphology. The classification of estuaries can therefore provide important information for distribution studies of nearshore biodiversity. However, many existing classifications are too coarse-scaled to resolve subtle environmental differences that may significantly alter biological structure. We developed an objective three-tier spatially nested classification, then conducted a case study in the Alexander Archipelago of Southeast Alaska, USA, and tested the statistical association of observed biota to changes in estuarine classes. At level 1, the coarsest scale (100–1000’s km2), we used patterns of sea surface temperature and salinity to identify marine domains. At level 2, within each marine domain, fjordal land masses were subdivided into coastal watersheds (10–100’s km2), and 17 estuary classes were identified based on similar marine exposure, river discharge, glacier volume, and snow accumulation. At level 3, the finest scale (1–10’s km2), homogeneous nearshore (depths <10 m) segments were characterized by one of 35 benthic habitat types of the ShoreZone mapping system. The aerial ShoreZone surveys and imagery also provided spatially comprehensive inventories of 19 benthic taxa. These were combined with six anadromous species for a relative measure of estuarine biodiversity. Results suggest that (1) estuaries with similar environmental attributes have similar biological communities, and (2) relative biodiversity increases predictably with increasing habitat complexity, marine exposure, and decreasing freshwater. These results have important implications for the management of ecologically sensitive estuaries.  相似文献   

20.
The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent2 = 0.97, r jackknife2 = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent2 = 0.75, r jackknife2 = 0.46), WTP (r apparent2 = 0.75, r jackknife2 = 0.49), and WTOC (r apparent2 = 0.79, r jackknife2 = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号