首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The restoration of a 20 ha tidal marsh, impounded for 32, yr, in Stonington, Connecticut was studied to document vegetation change 10 yr after the reintroduction of tidal flushing. These data were then compared to a 1976 survey of the same marsh when it was in its freshest state and dominanted byTypha angustifolia. Currently,T. angustifolia remains vigorous only along the upland borders and in the upper reaches of the valley marsh. Live coverage ofT. angustifolia has declined from 74% to 16% and surviving stands are mostly stunted and depauperate. Other brackish species have also been adversely effected, except forPhragmites australis which has increased. In contrast, the salt marsh speciesSpartina alterniflora has dramatically expanded, from <1% to 45% cover over the last decade. Locally, high marsh species have also become established, covering another 20% of the marsh.  相似文献   

2.
Since the early 1900sPhragmites australis has been replacing other vegetation in Atlantic and gulf coast marshes at a rate of about 1% to 6% of the marsh surface per year. Vast areas of coastal marsh are now characterized by dense monotypic stands of this species. By virtue of its ability to build up the marsh surface,P. australis affects the landscape, hydrology, and hydroperiod of the marsh as well as drainage density, and other geomorphic features. Smoothed microtopography results in more difficult access to the marsh by nekton, and possibly reduced exchange of organic materials between the marsh and adjacent estuary. The pattern of replacement byP. australis results in fragmentation of existing stands ofSpartina alterniflora and other extant macrophytes, thereby altering landscape ecology and the ability of the marsh to support biodiversity and the production of marsh fauna.  相似文献   

3.
Benthic macroinvertebrate abundance, taxonomic composition, and surface flooding dynamics were compared among high and low elevation stands of narrow-leaved cattail (Typha angustifolia) and invasive common reed (Phragmites australis) at Iona Island Marsh, an oligohaline wetland, and Piermont Marsh, a mesohaline wetland, within the Hudson River National Estuarine Research Reserve during 1999 and 2000. Overall, the benthic macroinvertebrate community at both sites was similar in composition and abundance to those documented from other low-salinity systems. Macroinvertebrate taxa richness was lowest in mesohaline common reed, but similar among common reed and cattail habitats in oligohaline wetlands. Total macroinvertebrate densities were greater at high-elevation compared to low-elevation reed stands at the mesohaline site during summer 1999 and spring 2000. Total macroinvertebrate densities were similar among both oligohaline vegetation types during all seasons, except for spring 2000, when lower densities were observed in low-elevation common reed. A weak positive relationship between macroinvertebrate density and depth of flooding suggests that surface hydrology may be influencing the observed patterns of macroinvertebrate density among the vegetation stands. These results suggest that benthic macroinvertebrate abundance and diversity may not necessarily be impaired in low-salinity wetlands experiencing invasion by common reed unless the change in vegetation is accompanied by a measurable alteration to physical conditions on the marsh surface (i.e., elevation and flooding dynamics).  相似文献   

4.
In recent decades, marshes naturally dominated bySpartina spp. have been replaced byPhragmites australis throughout the northeastern United States. We suggest that early in this invasion there was little effect on the fish fauna. As the invasion proceeds, the marsh surface habitat became more altered (i.e., elevated, flattened, reduced water-filled depressions, and reduced standing water), which resulted in a reduction of feeding, reproduction, and nursery function for fishes, especiallyFundulus spp. These potential changes in marsh habitat and function have resulted in numerous attempts to removePhragmites and restoreSpartina spp. To evaluate the response of marsh surface fishes toPhragmites treatment, we examined fish use in the brackish water reaches of Alloway Creek in the Delaware Bay estuary. ReferencePhragmites habitats were compared with referenceSpartina alterniflora-dominated habitats and sites treated (1996–1998) to removePhragmites to restore former vegetation (i.e., restored, now comprised of 100%Spartina). Fish were sampled with an array (n=9 at each site) of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm). Small individuals (mean=17.5, 5–45 mm TL) dominated all pit trap collections. Fish abundance was highest at the restored (catch per unit effort [CPUE]=2.16) andSpartina (CPUE=0.81) sites with significantly lower values atPhragmites (CPUE=0.05) habitats. Samples were dominated by young-of-the-year mummichog,Fundulus heteroclitus (98% of total fish, n=631). The only other fish species collected was spotfin killifish,Fundulus luciae (2% of total catch, n=14), which was only present in restored andSpartina habitats. These observations suggest that the restored marsh is providing habitat (water-filled depressions on the marsh surface) for young-of-the-yearFundulus spp. These marshes are responding favorably to the restoration based on the much greater abundance of fish in restored versusPhragmites habitats and the overall similarity between restored andSpartina habitats.  相似文献   

5.
Distribution, abundance, and community structure were studied over a 30 month period in the planktonic copepod community of the estuaries near Beaufort, North Carolina. Many of the copepod species showed a demersal distribution during the day and entered the surface waters at night. Several species were largely confined to vegetated littoral areas during the day. The copepod community showed consistent trends of seasonal abundance and succession of dominant species which differed greatly from those found by previous workers, whose methods were inadequate to sample quantitatively the small, demersal copepods which dominated the community. Copepod abundances were higher than found in previous studies and were correlated with water temperature. Species composition changed from a winter community dominated byCentropages spp., to a spring community dominated byAcartia tonsa, to a summer community jointly dominated byParacalanus crassirostris andOithona spp. Copepods were much more important grazers in these estuaries than previous studies had concluded.  相似文献   

6.
Destruction of tidal wetlands has led to a growing interest in the restoration and creation of new wetland habitat. However, while natural stands of vegetation have been successfully duplicated, less is understood about the establishment of faunal communities in created or restored tidal marshes. Infauna, which may form an important link between detrital production and commercially important finfish and decapods, have received limited attention in vegetated marsh habitats. We examined the infauna, changes in vegetation composition, and selected physical parameters in created marshes of different ages. Infauna were sampled using standard core sampling techniques. Vegetation composition and changes in relative abundance were observed using plot-point techniques. Vegetation plots indicated ongoing replacement ofSpartina alterniflora bySchoenoplectus robustus, a pattern supported by comparisons of vegetation at one of the sites to that reported in a previous study. Infauna exhibited significant differences between sites of different ages, with the intermediate-age site having intermediate densities for several taxa. These results suggest that both infauna and vegetation in created marshes undergo long-term change (ongoing after 10–20 yr), with both the plant and infaunal communities having qualitatively similar overall species composition to natural marsh areas.  相似文献   

7.
Much effort has been directed recently at restoring marshes, by the removal of the invasive common reed,Phragmites australis, yet it is not clear how fish and invertebrates have responded either to the invasion ofPhragmites or to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs toPhragmites invasion and restoration efforts by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molting of crabs in three physically similar areas differing in marsh vegetation;Spartina-dominated,Phragmites-dominated, and a treated area (Phragmites removed and now dominated bySpartina) in one marsh in the upper portion of Delaware Bay. Field sampling occurred monthly (April to November) from 1999 to 2001 using replicate daytime otter trawls in large marsh creeks. Crabs were categorized by carapace width into recruits (<30 mm), juveniles (30–115 mm), and adults (>115 mm). Juveniles dominated the system, representing 69.4% of all crabs. Similar monthly increases in mean size and molting patterns during the growing season (May–August) occurred inSpartina (natural and treated sites) andPhragmites sites suggesting that, subtidal habitats, used for molting, in these areas do not differ. More juveniles in the feeding molt stage (i.e., intermolt) than in other molt stages and more recruits predominantly in the feeding molt stage than adults were inSpartina, suggesting differences in the marsh surfaces used as feeding habitats withSpartina being preferred. Sex ratios of each life history stage were skewed towards males, but this was related to the low salinity of Alloway Creek, rather than marsh surface vegetation. Our results suggest that marsh surface vegetation influences the way blue crabs use marsh surface habitats, thus restoration efforts focusing on changing vegetation type may have a positive influence on blue crabs.  相似文献   

8.
The use of constructed wetlands to replace natural wetlands has become a widespread management tool. Because of the inherent disturbed nature of these sites, constructed wetlands are susceptible to colonization by undesirable plant species. Vegetated communities in 15 constructed wetland sites ranging in age from 1 to 12 yr and in size from 0.4 to 5.3 ha were surveyed using differential global positioning system (GPS) technology in 1994. These sites were re-surveyed in 2000. Colonization of the sites byPhragmites australis expanded from 73% of the sites in 1994 to 80% of the sites in 2000. The total area colonized byP. australis within the sites increased from 3.47 to 4.96 ha. In some sites, the area ofP. australis decreased, which appears to be correlated with an increase in scrub-shrub vegetation (0.986, p=0.014). Similar to results from the previous study, sites that are surrounded by subtidal perimeter ditches have significantly lessP. australis than those sites without perimeter ditches (p=0.019).P. australis expansion rates within the sites varied from 0.1 to 5.6 yr?1. Colonization of constructed wetland sites byP. australis should be a continued concern of resource managers. Activities such as planting scrub-shrub species on the upland-wetland berm and construction of subtidal perimeter ditches should be considered as methods to reduce the probability of invasion.  相似文献   

9.
The invasion ofPhragmites australis into tidal marshes formerly dominated bySpartina alterniflora has resulted in considerable interest in the consequences of this invasion for the ecological functions of marsh habitat. We examined the provision of trophic support for a resident marsh fish,Fundulus heteroclitus, in marshes dominated byP. australis, byS. alterniflora, and in restored marshes, using multiple stable isotope analysis. We first evaluated our ability to distinguish among potential primary producers using the multiple stable isotope approach. Within a tidal creek system we found significant marsh and elevation effects on microalgal isotope values, and sufficient variability and overlap in primary producer isotope values to create some difficulty in identifying unique end members. The food webs supportingF. heteroclitus production were examined using dual isotope plots. At both sites, the δ13C values ofF. heteroclitus were clustered over values for benthic microalgae (BMI) and approximately midway between δ13C values ofSpartina andPhragmites. Based on comparisons of fish and primary producer δ13C, δ15N, and δ34S values, and consideration ofF. heteroclitus feeding habits, we conclude that BMI were a significant component of the food web supportingF. heteroclitus in these brackish marshes, especially recently-hatched fish occupying pools on the marsh surface. A 2‰ difference in δ13C betweenFundulus occupying nearly adjacentSpartina andPhragmites marshes may be indicative of relatively less reliance on BMI and greater reliance onPhragmites production inPhragmites-dominated marshes, a conclusion consistent with the reduced BMI biomass found inPhragmites marshes. The mean δ13C value ofF. heteroclitus from restored marshes was intermediate between values of fish from naturally occurringSpartina marshes and areas invaded byPhragmites. We also examined the isotopic evidence for ontogenetic changes in the trophic position of larval and juvenileF. heteroclitus. We found significant positive relationships betweenF. heteroclitus δ15N values and total length, reflective of an increase in trophic position as fish grow.F. heteroclitus δ15N values indicate that these fish are feeding approximately two trophic levels above primary producers.  相似文献   

10.
Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time.  相似文献   

11.
The tidally inundated marsh surface is an importnat site for energy exchanges for many resident and transient species. In many areas along the East Coast of the U.S. the dominant vegetation,Spartina alterniflora, has been replaced by the common reed (Phragmites australis). This shift has caused concern about the impact ofPhragmites on marsh fauna but research in this area has been limited. During 1997 and 1998, we examined the effect ofPhragmites on fish and decapod crustacean use of the marsh surface in the brackish water reaches of the Mullica River, in southern New Jersey, U.S. Fish and decapod crustaceans were sampled with an array of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm) and with flumes (1.3 m wide×10 m long of 3.2-mm mesh). Fish (2–60 mm TL) dominated pit trap collections withFundulus heteroclitus andFundulus luciae significantly more abundant atSpartina sites.Fundulus heteroclitus was also the dominant fish (15–275 mm TL) collected in flumes but collections with this gear, including a number of species not collected in pit traps, showed no distinct preferences for different marsh vegetation types. Decapod crustaceans (1–48 mm CW) collected in pit traps were generally less abundant than fishes withCallinectes sapidus andPalaemonetes spp. most abundant inSpartina, whileRhithropanopeus harrisii was most abundant inPhragmites. The same decapod crustacean species (2–186 mm CW) dominanted the flume collections and, similar to the pattern of fish collected by the flumes, there were no distinct habitat preferences for different marsh vegetation types. As a result of these observations, with different sampling techniques, it appears there is an overall negative effect ofPhragmites on larval and small juvenile fish but less or no effect on larger fish and decapods crustaceans.  相似文献   

12.
Delaware Bay is one of the largest estuaries on the U.S. eastern seaboard and is flanked by some of the most extensive salt marshes found in the northeastern U.S. While physicochemical and biotic gradients are known to occur along the long axis of the bay, no studies to date have investigated how the fish assemblage found in salt marsh creeks vary along this axis. The marshes of the lower portion of the bay, with higher salinity, are dominated bySpartina spp., while the marshes of the upper portion, with lower salinity, are currently composed primarily of common reed,Phragmites australis, S. alterniflora, or combinations of both. Extensive daytime sampling (n=815 tows) during May–November 1996 was conducted with otter trawls (4.9 m, 6 mm mesh) in six intertidal and subtidal marsh creek systems (upper and lower portions of each creek) where creek channel depths ranged from 1.4–2.8 m at high tide. The fish taxa of the marsh creeks was composed of 40 species that were dominated by demersal and pelagic forms including sciaenids (5 species), percichthyids (2), and clupeids (7), many of which are transients that spawn outside the bay but the early life history stages are abundant within the bay. The most abundant species wereMorone americana (24.3% of the total catch),Cynoscion regalis (15.4%),Micropogonias undulatus (15.3%),Anchoa mitchilli (12.0%), andTrinectes maculatus (10.8%). Non-metric Multi-Dimensional Scaling ordination of catch per unit effort (CPUE) data indicated two fish assemblages that were largely independent of the two major vegetation types, but generally corresponded with spatial variation in salinity. This relationship was more complex because some of the species for which we could discriminate different age classes by size had different patterns of distribution along the salinity gradient.  相似文献   

13.
We compared nekton densities over a range of measured flooding conditions and locations withinPhragmites australis andSpartina alterniflora (salt marsh cordgrass) at the Charles Wheeler Salt Marsh, located on the lower Housatonic River estuary in southwestern Connecticut. Nekton were sampled on nine spring high tide events from May to October 2000 using bottomless lift nets positioned between 0–5 and 10–20 m from the creek edge. Flooding depth, duration, and frequency were measured from each vegetation type during each sampling month. Benthic macroinvertebrate density was also measured within each vegetation type in May, July, and September. Frequency of flooding was 52% lower and flooding depth and duration were also significantly reduced inP. australis relative toS. alterniflora. A total of 4,197 individuals representing 7 species, mostlyPalaemonetes pugio (dagger-blade grass shrimp) andFundulus heteroclitus (common mummichog), were captured.P. pugio densities were significantly greater inS. alterniflora as were benthic macroinvertebrate density and taxa richness during May, but not during June or October. Total fish density was not significantly different betweenP. australis andS. alterniflora and was independent of location on the marsh. Significantly more juvenileF. heteroclitus were collected withinS. alterniflora relative toP. australis in June and July, suggesting that recruitment of this species may be lower inP. australis habitat. Fish density generally did not vary predictably across the range of flooding depth and duration; there was a positive relationship between flooding depth and fish density inS. alterniflora. The measured reduction in flooding frequency (52%) withinP. australis at the Housatonic site would result in an average total monthly fish use, expressed as density, of 447 ind m−2 forP. australis and 947 ind m−2 forS. alterniflora. WhenP. australis expansion results in reduction of flooding frequency and duration, nekton community composition can change, access to the marsh surface is reduced twofold, and nursery habitat function may be impaired.  相似文献   

14.
Mordern alluvial pollen varies with geomorphic setting and depositional facies in sediments of the Yellow, Hutuo, and Luan rivers and in Baiyangdian and Hengshuihu lakes. Most of the arboreal pollen is derived from the mountains, whereas most of the nonarboreal pollen is derived from the plain itself. Alluvium dominated byPinuspollen andSelaginellaspores was deposited during a flood. Hydrodynamic sorting of alluvial pollen exists in the sediments of floodplain, central bar, natural levees, and point bar. In reconstructing the ancient vegetation and past climate based on pollen in alluvium, it is important to consider sedimentary facies and geomorphologic setting.  相似文献   

15.
Prescribed fire management generally stimulates plant biomass production in coastal marsh systems. This study was conducted to understand the interactive effects of the mechanisms of fire on vegetation production. The effects of canopy removal and ash deposition on biomass production were investigated in two manipulative experiments at the Blackwater National Wildlife Refuge, Dorchester County, MD. On non-burned sites, canopy removal increased biomass production above and belowground (40 and 260?%, respectively), while ash deposition showed no effect on production. On burned sites, post-burn canopy replacement decreased biomass production above and belowground (41 and 40?%, respectively). Production increased more in response to canopy removal at sites dominated by Schoenoplectus americanus than at sites dominated by Spartina patens and Distichlis spicata. Canopy removal was the dominant mechanism through which fire affected biomass production in this study. If increased biomass production is a desirable outcome, prescribed fire programs may benefit by maximizing canopy removal.  相似文献   

16.
Multiple introductions are believed to play an important role in increasing genetic diversity and adaptability of invasive species, but there are few well-documented examples. The common reed, Phragmites australis, has dramatically increased in tidal wetlands throughout the USA in the past century due primarily to the introduction of a Eurasian lineage. In the Mississippi River “Balize” delta, P. australis is the dominant vegetation where monotypic stands of an introduced form blanket the outer marshes. The delta’s interior marshes, on the other hand, are more vegetatively diverse, serving as important waterfowl foraging habitat. Recent encroachment by various phenotypic forms of P. australis into the interior marshes led to this study examining genetic variation in these stands. Our results revealed four chloroplast DNA haplotypes that also segregate based on microsatellite variation. Three of these are closely related and introduced, but differ relative to time and likely mode of introduction. The “Delta” type (haplotype M1), which is unique to the region and the most common lineage, displays considerable microsatellite diversity. The Eurasian introduced lineage of P. australis (haplotype M), which is invasive elsewhere in North America, is increasing its distribution in the delta. A novel haplotype, AD, was also identified which is phenotypically and genetically similar to haplotype M. Despite the close relatedness, we found no evidence for inter-haplotype gene exchange at the nuclear level, suggesting that intraspecific hybridization is not a contributing factor to these invasions. The site provides a unique opportunity for researchers to understand the dynamics of multiple P. australis invasions.  相似文献   

17.
Approximately 50,000 ha of native ‘ōhi’a (Metrosideros polymorpha) rain forest on the windward side of the island of Hawaii experienced a pronounced dieback of the tree canopy during the 1960s and early 1970's. The forests affected were located between 600 and 1,500 m elevation where the median annual rainfall was greater than 25000mm. Dieback stands were found on a variety of different substrates ranging from 500–10,000 years in age. Most of the stands that experiencel dieback had canopy cover greater than 60% prior to 1960. In 1976 and 1977 we established 43 relevés in dieback and non-dieback forest stands to assess canopy tree vigor, composition and structure of the vegetation, and to describe substrate characteristics.Metrosideros population structure and tree vigor were resampled for 25 of these relevés in 1982 and 1985–1986. The results of air photo analysis and ground sampling showed that dieback has not expanded very much within the study area since 1977. However, 5 of the relevés sampled in 1977 continued to decline in tree canopy vigor between 1977 and 1982 while 2 others showed a slight recovery in vigor over this same period. Seedling and sapling regeneration has been extremely vigorous in most of the sites that experienced a breakdown of the canopy while, in stands with an intact, dense tree canopy no such regeneration occurred. It appears that most of the stands which experienced canopy dieback have the potential to become closed forest communities again, dominated byMetrosideros. The natural recovery process may be disrupted in some areas due to additional competition for light and nutrients from invading populations of both native and alien plant species that have become established following canopy dieback.  相似文献   

18.
We sampled nekton (fishes and decapod crustaceans) in submerged aquatic vegetation (SAV) (Potanogeton nodosus, Najas guadalupensis), in emergent marsh vegetation (Sagittaria spp. andScirpus americanus), and over unvegetated bottom associated with three islands in the Atchafalaya River Delta, Louisiana. The purpose of our study was to quantify nekton densities in these major aquatic habitat types and to document the relative importance of these areas to numerically dominant aquatic organisms. We collected a total of 33 species of fishes and 7 species of crustaceans in 298 1-m2 throw trap samples taken over three seasons: summer (July and August 1994), fall (September and October 1994), and spring (May and June 1995). Fishes numerically accounted for >65% of the total organisms collected. Vegetated areas generally supported much higher nekton densities than unvegetated sites, although bay anchoviesAnchoa mitchilli were more abundant over unvegetated bottom than in most vegetated habitat types. Among vegetation types, most species showed no apparent preference between SAV and marsh. However, inland silversidesMenidia beryllina and freshwater gobiesGobionellus shufeldti were most abundant inScirpus marsh in summer, and blue crabsCallinectes sapidus were most abundant in SAV (Potamogeton) in spring. Several species (sheepshead minnowCyprinodon variegatus, rainwater killifishLucania parva, and blue crab) apparently selected the vegetated backmarsh of islands (opposite of riverside) over stream-sideScirpus marsh. Freshwater gobies, in contrast, were most abundant in streamsideScirpus marsh. Densities of juvenile blue crabs were high (up to 17 m−2) in vegetated delta habitat types and comparable to values reported from more saline regions of Gulf Coast estuaries. Shallow vegetated habitat types of the Atchafalaya River Delta and other tidal freshwater systems of the Gulf Coast may be important nursery areas for blue crabs and other estuarine species.  相似文献   

19.
In order to document the effect of the recent drought and the resulting marine intrusion event on plant-community shifts in a Louisiana estuary, we analyzed two vegetation data sets collected in Barataria estuary in 1997 and 2000 and compared community shifts to surface salinity changes at four points along the estuarine gradient within the study area. We used the major vegetation types identified in our previous research of larger data sets and tested the use of a simple vegetation classification technique. This vegetation classification technique is based primarily on the dominant and co-dominant species, and secondarily on the number of taxa observed. To distinguish vegetation types with similar dominant species but different associated species, the vegetation classification technique used a salinity score derived from the species composition. Surface water salinity increases were reflected by a change in species composition in the mesohaline to fresh marshes. The largest species composition shift observed was the shift from oligohaline wiregrass (species rich vegetation type dominated bySpartina patens) to mesohaline wiregrass (vegetation type dominated byS. patens with few other species). Shifts in vegetation composition may have been enhanced by the presence of the major dominant species at a low abundance in other vegetation types. The vegetation classification technique used could classify over 95% of the stations. This vegetation classification technique provides a simple method to classify Louisiana's coastal vegetation based on plant species composition.  相似文献   

20.
Germination of mature, viable seeds ofDistichlis spicata (L.) Greene. andScirpus robustus Pursh. from two Virginia salt marshes was not significantly inhibited by aqueous washings from the rhizospheres of sand-culturedPhragmites australis (Cav.) Trin. ex. Stend.,Juncus roemerianus Scheele, orTypha angustifolia L. Germination ofS. robustus seed was inhibited by increased osmotic pressure whileD. spicata germination increased (2.5 fold) significantly when treated with leachate fromT. angustifolia rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号