首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Seismic Hazard Assessment: Issues and Alternatives   总被引:3,自引:0,他引:3  
Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used interchangeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been proclaimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications.  相似文献   

2.
地震危险性分析中的不确定性处理和表征,一直是核电厂厂址地震安全性评价中倍受关注的重要问题,尤其是日本福岛核事故后,无论是确定核电厂厂址的设计基准地震动,还是进行核电厂地震风险评价,都更加重视地震危险性分析中的不确定性.本文通过理论分析重点说明了衰减关系的不确定性,包括标准差和截断水平对核电厂地震安全性评价的影响,并在此基础上,通过算例和讨论说明了概率性方法截断水平的选取问题,探讨了现行确定性方法和概率性方法在截断水平选取上的差异.分析计算结果表明,在地震活动较弱的区域,概率性方法截断水平为3,确定性方法截断水平为0的现行做法是恰当的.但是,对于发震构造大震复发间隔较小的区域,为了使二者在超越概率方面协调,恰当提高确定性方法的截断水平更为合理.  相似文献   

3.
管道抗震设计规范有关地震作用的综述   总被引:2,自引:0,他引:2  
本文通过介绍中国、日本、美国、英国、挪威的相关管道抗震规范,阐述了目前管道应变设计和性能设计的理念、方法以及对地震作用输入的要求。通过比较各国管道抗震设计规范,保证震后管道维持其服务功能的抗震设计理念已经得到了全世界范围的认可。现在的管道设计正向性能设计的方向发展,并提出了两级抗震设防的方法。其中,第二级以管道不发生泄漏为抗震设防目标,对管道的地震安全性评价工作提出了更高的要求,管道设计需要的地震动和地面永久变形参数也越来越多。在目前管道工程的地震安全性评价工作中,存在概率方法和确定性方法这两种方法并举的局面。针对管道的抗液化和滑坡设计,地面永久位移可以利用分解的地震安全性评价概率方法得到。针对管道的抗断设计,断层未来位错量的估计方法现在仍以确定性方法为主,概率方法因为断层位错量沿着破裂带的分布较为复杂仍有待进一步研究。  相似文献   

4.
We present the basis for a method for estimating the return period of large and medium earthquakes that is independent of current deterministic and probabilistic approaches. The two standard techniques of seismic hazard assessment??probabilistic seismic hazard assessment (PSHA) and deterministic seismic hazard assessment (DSHA)??suffer from limited knowledge of seismic prehistory. A further weakness of PSHA is its requirement of homogeneous seismic activity within a seismic zone. Moreover, PSHA and DSHA were developed for seismically active areas and, thus, cannot reliably be used in areas of medium and low activity. In this paper we propose the combined use of geodetic strain rate data and the seismic moment data set determined for past seismic events. This combination represents a new and independent approach to estimation of future seismic activity. Using a modified version of Kostrov??s (Phys Solid Earth 1:23?C40, 1974) equation and the catalogue of seismic moments, the minimum return period of the strongest earthquakes of a source area is estimated.  相似文献   

5.
Modern earthquake ground motion hazard mapping in California began following the 1971 San Fernando earthquake in the Los Angeles metropolitan area of southern California. Earthquake hazard assessment followed a traditional approach, later called Deterministic Seismic Hazard Analysis (DSHA) in order to distinguish it from the newer Probabilistic Seismic Hazard Analysis (PSHA). In DSHA, seismic hazard in the event of the Maximum Credible Earthquake (MCE) magnitude from each of the known seismogenic faults within and near the state are assessed. The likely occurrence of the MCE has been assumed qualitatively by using late Quaternary and younger faults that are presumed to be seismogenic, but not when or within what time intervals MCE may occur. MCE is the largest or upper-bound potential earthquake in moment magnitude, and it supersedes and automatically considers all other possible earthquakes on that fault. That moment magnitude is used for estimating ground motions by applying it to empirical attenuation relationships, and for calculating ground motions as in neo-DSHA (Zuccolo et al., 2008). The first deterministic California earthquake hazard map was published in 1974 by the California Division of Mines and Geology (CDMG) which has been called the California Geological Survey (CGS) since 2002, using the best available fault information and ground motion attenuation relationships at that time. The California Department of Transportation (Caltrans) later assumed responsibility for printing the refined and updated peak acceleration contour maps which were heavily utilized by geologists, seismologists, and engineers for many years. Some engineers involved in the siting process of large important projects, for example, dams and nuclear power plants, continued to challenge the map(s). The second edition map was completed in 1985 incorporating more faults, improving MCE??s estimation method, and using new ground motion attenuation relationships from the latest published results at that time. CDMG eventually published the second edition map in 1992 following the Governor??s Board of Inquiry on the 1989 Loma Prieta earthquake and at the demand of Caltrans. The third edition map was published by Caltrans in 1996 utilizing GIS technology to manage data that includes a simplified three-dimension geometry of faults and to facilitate efficient corrections and revisions of data and the map. The spatial relationship of fault hazards with highways, bridges or any other attribute can be efficiently managed and analyzed now in GIS at Caltrans. There has been great confidence in using DSHA in bridge engineering and other applications in California, and it can be confidently applied in any other earthquake-prone region. Earthquake hazards defined by DSHA are: (1) transparent and stable with robust MCE moment magnitudes; (2) flexible in their application to design considerations; (3) can easily incorporate advances in ground motion simulations; and (4) economical. DSHA and neo-DSHA have the same approach and applicability. The accuracy of DSHA has proven to be quite reasonable for practical applications within engineering design and always done with professional judgment. In the final analysis, DSHA is a reality-check for public safety and PSHA results. Although PSHA has been acclaimed as a better approach for seismic hazard assessment, it is DSHA, not PSHA, that has actually been used in seismic hazard assessment for building and bridge engineering, particularly in California.  相似文献   

6.
城市典型建筑的地震损失预测方法Ⅰ: 结构易损性分析   总被引:2,自引:1,他引:1  
地震作用下结构的易损性分析是地震灾害损失预测方法的重要组成部分。本文针对多层砌体房屋结构、排架结构和多层钢筋混凝土结构等3种城市典型建筑,首先给出了该类单体建筑的地震结构易损性分析方法,然后对群体建筑的地震易损性分析方法,以及群体建筑的易损性分类方法进行了探讨,为城市典型建筑的地震灾害损失预测和评估提供参考,并为宁波市抗震防灾规划的地震损失预测提供基础。  相似文献   

7.
An effective strategy of seismic retrofitting consists of installing nonlinear viscous dampers between the existing building, with insufficient lateral resistance, and some auxiliary towers, specially designed and erected as reaction structures. This allows improving the seismic performance of the existing building without any major alteration to its structural and nonstructural elements, which makes this approach particularly appealing for buildings with heritage value. In this paper, the nonlinear governing equations of the coupled lateral‐torsional seismic motion are derived from first principles for the general case of a multistory building connected at various locations in plan and in elevation to an arbitrary number of multistory towers. This formulation is then used to assess the performance of the proposed retrofitting strategy for a real case study, namely, a 5‐story student hall of residence in the city of Messina, Italy. The results of extensive time‐history analyses highlight the key design considerations associated with the stiffness of the reaction towers and the mechanical parameters of the nonlinear viscous dampers, confirming the validity of this approach.  相似文献   

8.
Seismic risk evaluation of built-up areas involves analysis of the level of earthquake hazard of the region, building vulnerability and exposure. Within this approach that defines seismic risk, building vulnerability assessment assumes great importance, not only because of the obvious physical consequences in the eventual occurrence of a seismic event, but also because it is the one of the few potential aspects in which engineering research can intervene. In fact, rigorous vulnerability assessment of existing buildings and the implementation of appropriate retrofitting solutions can help to reduce the levels of physical damage, loss of life and the economic impact of future seismic events. Vulnerability studies of urban centres should be developed with the aim of identifying building fragilities and reducing seismic risk. As part of the rehabilitation of the historic city centre of Coimbra, a complete identification and inspection survey of old masonry buildings has been carried out. The main purpose of this research is to discuss vulnerability assessment methodologies, particularly those of the first level, through the proposal and development of a method previously used to determine the level of vulnerability, in the assessment of physical damage and its relationship with seismic intensity. Also presented and discussed are the strategy and proposed methodology adopted for the vulnerability assessment, damage and loss scenarios for the city centre of Coimbra, Portugal, using a GIS mapping application.  相似文献   

9.
本文提出一种评估同一地区不同类型结构的抗震投入产出效益的新指标,即结构价值损失比率。利用"5·12"汶川地震后对甘肃陇南的学校、住宅、办公、医院和生命线工程等9类建筑物的调查统计结果,研究了震害等级、经济损失与结构抗震初始投入之间的关系,建立了结构价值损失比率与结构初始投入之间的关系和高烈度区危房率与地震地面运动峰值之间的关系。对比分析了土-木组合、砖-木组合、砖砌体结构、非隔震框架结构和基础隔震结构等不同类型结构的抗震性能,并与实际鉴定的震害等级相比较。利用结构价值损失比率,初步说明了采用隔震新技术结构的减灾效益。  相似文献   

10.
地震作用下结构的易损性分析是地震灾害损失预测方法的重要组成部分。本文针对多层砌体房屋结构、排架结构和多层钢筋混凝土结构等3种城市典型建筑,首先给出了该类单体建筑的地震结构易损性分析方法,然后对群体建筑的地震易损性分析方法,以及群体建筑的易损性分类方法进行了探讨,为城市典型建筑的地震灾害损失预测和评估提供参考,并为宁波市抗震防灾规划的地震损失预测提供基础。  相似文献   

11.
按新旧规范设计的多层住宅砖房地震易损性的对比   总被引:1,自引:0,他引:1  
本文采用概率方法借助于拉丁超立方采样技术和非线性地震反应时程分析对按现行规范设计的多层住宅砖房的地震易损性进行分析,并与按上一代规范设计的多层住宅砖房的地震易损性分析结果[1]进行了比较,为进一步研究这类结构的地震安全性、未来地震的损失预测以及防震减灾对策奠定基础。  相似文献   

12.
基于BP神经网络模型的多层砖房震害预测方法   总被引:10,自引:2,他引:8  
针对传统的基于地震烈度的建筑物震害预测方法的不足,本文以地震动峰值加速度作为建筑物震害预测的地震动指标,结合几次大地震中多层砖房的震害实例,提出了一种基于BP神经网络模型的建筑物震害预测方法,模型的输入为反映结构抗震性能的各类物理参数,输出为给定地震动峰值加速度下建筑物破坏状态的概率。研究表明:基于BP网络模型的多层砖房的震害预测结果与震害实例的实际情况比较吻合,本文的思路和方法可推广于其他不同类型的建筑结构的震害预测。  相似文献   

13.
多层住宅砖房的地震易损性分析   总被引:5,自引:2,他引:5  
本文采用概率方法借助于拉丁超立方采样技术和非线性地震反应过程分析对多层住宅砖房的地震易损性进行分析。其分析样本是根据多层住宅砖房目前常用设计参数值的范围选定参数的代表值,并由这些代表值构成的;分析中考虑了地震荷载、结构反应和结构承载力的不确定性。易损性曲线分别对五个不同结构破坏程度的极限状态给出。  相似文献   

14.
Based on the experience of recent violent earthquakes, the limits of the methods that are currently used for the definition of seismic hazard are becoming more and more evident to several seismic engineers. Considerable improvement is felt necessary not only for the seismic classification of the territory (for which the probabilistic seismic hazard assessment??PSHA??is generally adopted at present), but also for the evaluation of local amplification. With regard to the first item, among others, a better knowledge of fault extension and near-fault effects is judged essential. The aforesaid improvements are particularly important for the design of seismically isolated structures, which relies on displacement. Thus, such a design requires an accurate definition of the maximum value of displacement corresponding to the isolation period, and a reliable evaluation of the earthquake energy content at the low frequencies that are typical of the isolated structures, for the site and ground of interest. These evaluations shall include possible near-fault effects even in the vertical direction; for the construction of high-risk plants and components and retrofit of some cultural heritage, they shall be performed for earthquakes characterized by very long return periods. The design displacement shall not be underestimated, but neither be excessively overestimated, at least when using rubber bearings in the seismic isolation (SI) system. In fact, by decreasing transverse deformation of such SI systems below a certain value, their horizontal stiffness increases. Thus, should a structure (e.g. a civil defence centre, a masterpiece, etc.) protected in the aforesaid way be designed to withstand an unnecessarily too large earthquake, the behaviour of its SI system will be inadequate (i.e. it will be too stiff) during much more frequent events, which may really strike the structure during its life. Furthermore, since SI can be used only when the room available to the structure laterally is sufficient to create a structural gap compatible with the design displacement, overestimating this displacement may lead to unnecessarily renouncing of the use of such a very efficient method, especially in the case of retrofits of existing buildings. Finally, for long structures (e.g. several bridges or viaducts and even some buildings) an accurate evaluation of the possibly different ground displacements along the structure is required (this also applies to conventionally built structures). In order to overcome the limits of PSHA, this method shall be complemented by the development and application of deterministic models. In particular, the lack of displacement records requires the use of modelling, once they are calibrated against more commonly available velocity or acceleration records. The aforesaid remarks are now particularly important in the P.R. China and Italy, to ensure safe reconstruction after the Wenchuan earthquake of May 12, 2008 and the Abruzzo earthquake of April 6, 2009: in fact, wide use of SI and other anti-seismic systems has been planned in the areas struck by both events.  相似文献   

15.
Building structures damaged by a seismic event may be exposed to the risk of aftershocks or another event within a certain period. In this paper, the seismic assessment of damaged piloti‐type RC buildings was carried out to evaluate probabilistic retrofitting effects under successive earthquakes. First, a framework to evaluate the effectiveness of retrofitting was proposed, and then the proposed methodology was demonstrated with a structure retrofitted with buckling‐restrained braces (BRBs). For consideration of realistic successive earthquakes, past records measured at the same station were combined. Within the framework, a series of nonlinear time history analyses were performed for an as‐is model subjected to single earthquake, a damaged model subjected to successive earthquakes, and a damaged model retrofitted with BRBs subjected to successive earthquakes. In addition, fragility analysis was systematically applied in the framework for evaluation of effectiveness of the retrofitting strategy. The proposed framework was capable of quantifying the influence of successive earthquakes and evaluating the effectiveness of BRB retrofitting by considering the severity of the first earthquake damage and the hysteresis behavior of the retrofit element. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
本文在对多次地震震害资料进行研究分析的基础上,对其中符合现代隔震原理或思想的震而不倒的现象进行了分析,并将其划归为5类:(1)柱基“铰结”隔震消能;(2)结构底部柔性防潮层或薄弱层滑移隔震;(3)殿基、墙基或塔基滑移隔震消能;(4)柔性地基隔震消能;(5)采用长周期柔性结构。针对每一类情况分别进行了剖析,并列举了一系列震害实例。最后对现代隔震技术发展中所存在的问题及发展方向提出了看法。  相似文献   

17.
In seismic base isolation, most of the earthquake‐induced displacement demand is concentrated at the isolation level, thereby the base‐isolation system undergoes large displacements. In an attempt to reduce such displacement demand, this paper proposes an enhanced base‐isolation system incorporating the inerter, a 2‐terminal flywheel device whose generated force is proportional to the relative acceleration between its terminals. The inerter acts as an additional, apparent mass that can be even 200 times higher than its physical mass. When the inerter is installed in series with spring and damper elements, a lower‐mass and more effective alternative to the traditional tuned mass damper (TMD) is obtained, ie, the TMD inerter (TMDI), wherein the device inertance plays the role of the TMD mass. By attaching a TMDI to the isolation floor, it is demonstrated that the displacement demand of base‐isolated structures can be significantly reduced. Due to the stochastic nature of earthquake ground motions, optimal parameters of the TMDI are found based on a probabilistic framework. Different optimization procedures are scrutinized. The effectiveness of the optimal TMDI parameters is assessed via time history analyses of base‐isolated multistory buildings under several earthquake excitations; a sensitivity analysis is also performed. The enhanced base‐isolation system equipped with optimal TMDI attains an excellent level of vibration reduction as compared to the conventional base‐isolation scheme, in terms not only of displacement demand of the base‐isolation system but also of response of the isolated superstructure (eg, base shear and interstory drifts); moreover, the proposed vibration control strategy does not imply excessive stroke of the TMDI.  相似文献   

18.
Seismic isolation or “aseismic base isolation” is an earthquake protection strategy that aims to uncouple the motion of a structure from the ground shaking and thereby reduce structural forces. A most effective and successful seismic protection technology, seismic isolation, is by now a mature and viable alternative to traditional capacity design and has been implemented in numerous bridges, buildings, and other special structures worldwide. This paper records the origins and early developments (up to the early 1990s) of seismic isolation.  相似文献   

19.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

20.
The earthquake of the 9th of July 1998 that hit in the central group of the Azores archipelago greatly affected the islands of Faial, Pico and S?o Jorge, reaching a magnitude of Mw 6.2 with the epicentre located about 15km northeast of the Faial Island. This earthquake allowed the collection of an unprecedented quantity of data concerning the characterisation of the building stock and the damage suffered by construction. This is the main purpose of this research, consisting essentially of three main aspects: (i) A detailed characterisation of the building stock, assigning a five category classification, from old traditional rubble stone masonry to reinforced concrete moment framed buildings; (ii) A detailed damage grade classification based on the different damage mechanisms observed; and, (iii) A seismic vulnerability assessment of the building stock. The results of the vulnerability assessment together with the building stock database and damage classification were integrated into a GIS tool, allowing the spatial visualation of damage scenarios, which is potentially useful for the planning of emergency response strategies and retrofitting priorities to mitigate and manage seismic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号