首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of El Chichón volcano is poorly understood, and we attempt in this study to demonstrate that the Tehuantepec Ridge (TR), a major tectonic discontinuity on the Cocos plate, plays a key role in determining the location of the volcano by enhancing the slab dehydration budget beneath it. Using marine magnetic anomalies we show that the upper mantle beneath TR undergoes strong serpentinization, carrying significant amounts of water into subduction. Another key aspect of the magnetic anomaly over southern Mexico is a long-wavelength (∼ 150 km) high amplitude (∼ 500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction PT structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40–80 km depth that we interpret as a partially serpentinized mantle wedge formed by fluids expelled from the subducting Cocos plate. Using phase diagrams for sediments, basalt and peridotite, and the thermal structure of the subduction zone beneath El Chichón we find that ∼ 40% of sediments and basalt dehydrate at depths corresponding with the location of the serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (∼90%) at depths of 180-200 km comparable with the slab depths beneath El Chichón (200-220 km). We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths is responsible for the unusual location, singularity and, probably, the geochemically distinct signature (adakitic-like) of El Chichón volcano.  相似文献   

2.
Curie Point Depth Estimates and Correlation with Subduction in Mexico   总被引:2,自引:0,他引:2  
We investigate the regional thermal structure of the crust in Mexico using Curie Point Depth (CPD) estimates. The top and bottom of the magnetized crust were calculated using the power-density spectra of the total magnetic field from the freely available ??Magnetic Anomaly Map of North America??. We applied this method to estimate the regional crustal thermal structure in overlapping square windows of 2°?×?2°. The CPD estimates range between 10 and 40?km and show several regions of relatively shallow and deep magnetic sources, with a general inverse correlation with measured heat flow. A deep CPD region (20?C30?km) is located in the fore-arc area where the subducting Cocos plate has a flat-slab geometry. This deep region is bound to the NW and SE by shallow CPD areas beneath the states of Michoacan (CPD?=?12?C16?km) and Oaxaca (CPD?=?~16?km), respectively. There is a good spatial correlation between this deep CPD area and two main fracture zones located on the incoming Cocos plate (Orozco and O??Gorman fracture zones), suggesting that subduction plays an important role in setting apart different CPD provinces along the Mexican coast. Another deep CPD (16?C32?km) area corresponds to the region where the Rivera plate subducts beneath Jalisco block. The Trans-Mexican Volcanic Belt is characterized by a decrease in Curie depths from west (16?C20?km) to east (10?C12?km). Finally, several deep CPD areas are situated in the back-arc region where old Mesozoic terrains are present. Our results suggest that the main control on the crust??s regional thermal structure in the fore-arc and volcanic arc regions is due to the subduction of the Cocos and Rivera plates beneath Mexico.  相似文献   

3.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   

4.

本文利用区域地震初至波到时数据,通过地震层析成像研究获得了东北日本俯冲带上地幔(深至约150 km)的P波速度(VP)、S波速度(VS)、VP/VS和P波各向异性结构.结果表明,低速及高VP/VS比异常体主要分布在火山下方的下地壳和地幔楔中,其与低频地震的分布吻合,该区域与俯冲板块脱水所释放的流体及其导致的部分熔融密切相关;俯冲的太平洋板块内可能由于脱水脆化导致的双层地震带区域则没有表现出整体的高VP/VS值,其可能与俯冲板块内部含水矿物含量有关;俯冲板块内双重地震带区域及上覆地幔楔薄层主要表现为与海沟平行的方位各向异性和正的径向各向异性,其可能是由于含水矿物的脱水使橄榄石晶格结构发生了从A型到B型的变化所引起的.我们研究表明,结合地震波速度和各向异性结构能够加深对俯冲带内水运移过程的认识.

  相似文献   

5.
The transport of water in subduction zones   总被引:9,自引:0,他引:9  
The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of 80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately.  相似文献   

6.
In this paper we search for a reference relation between seismic P-wave velocity V and density ρ ref for the continental crust. Based on the results of modern seismic experiments, we compiled 2-D seismic models into a network of four, each about 1100–1400 km long, continental-scale seismic transects cutting all main tectonic units in Central Europe. The Moho depth (about 52 km beneath the TESZ in SE Poland, to about 25 km beneath the Pannonian Basin) and the crustal structure of this area are characterised by a large variation. This structural variation provides an interesting basis for gravity studies and especially for analysing the difference of the density structure between two major tectonic provinces of distinctive age difference: Precambrian and Phanerozoic. The 2-D gravity modelling applied for crustal cross-sections representing the regional structure, based on a unified gravity anomaly map of the area, allows for a stable determination of some general features of the regional reference velocity-density relation for the continental crust. In general three major seismo-petrological types of rocks can be distinguished: sediments, crystalline crust and mantle. In compacted sediments the reference velocity-density relation is well described by the Gardner or Nafe-Drake model. Calculated gravity anomalies, using unified velocity-density relation for the whole crystalline crust, well describe observed anomalies, with an average difference of 14 mGal. However, calculated gravity anomalies, using separated velocity-density relations for the crystalline crust of Precambrian and Phanerozoic Europe, describe observed anomalies better than for the entire crust, with an average difference 12 mGal. The most important feature of these relations is the large differentiation of the derivative dρ ref /dV in the crystalline crust, being about 0.3 g s/m4 for Precambrian, and about 0.1 g s/m4 for the Phanerozoic crystalline crust. The modelling suggests a very small density value in the uppermost mantle ρ = 3.11 g/cm3 below the younger area, while for the older area it is ρ = 3.3 g/cm3.  相似文献   

7.
Thermal models of subduction zones often base their slab–wedge geometry from seismicity at mantle depths and, consequently, cannot be used to evaluate the relationship between seismicity and structure. Here, high-resolution seismic observations from the recent Broadband Experiment Across the Alaska Range (BEAAR) constrain, in a rare instance, the subducting slab geometry and mantle wedge temperature independent of seismicity. Receiver functions reveal that the subducting crust descends less steeply than the Wadati-Benioff Zone. Attenuation tomography of the mantle wedge reveals a high Q and presumably cold region where the slab is less than 80 km deep. To understand these two observations, we generate thermal models that use the improved wedge geometry from receiver functions and that incorporate temperature- and strain-rate-dependent olivine rheology. These calculations show that seismicity within the subducting crust falls in a narrow belt of pressure–temperature conditions, illuminating an effective Clapeyron slope of 0.1 K/MPa at temperatures of 450–750 °C. These conditions typify the breakdown of high-pressure hydrous minerals such as lawsonite and suggest that a single set of dehydration reactions may trigger intermediate-depth seismicity. The models also require that the upper, cold nose of the mantle wedge be isolated from the main flow in the mantle wedge in order to sustain the cold temperatures inferred from the Q tomography. Possibly, sufficient mechanical decoupling occurs at the top of the downgoing slab along a localized shear zone to 80 km depth, considerably deeper than inferred from thrust zone seismicity.  相似文献   

8.
The nature and origin of the concentrated deformation zone along the Japan Sea coast (NKTZ: Niigata-Kobe tectonic zone) was investigated by carefully analyzing the GPS data and qualitatively modeling the lower crust in NKTZ. It was concluded that this deformation zone is not a plate boundary between the Amurian plate (AMU) and the North America plate but is rather an internal deformation zone near the eastern margin of AMU. The data previously obtained on the conductivity anomalies in the lower crust and the 3He/4He ratios suggest that the concentrated deformation in NKTZ results from the lower crust in NKTZ being weakened by a high water content. The high water content is thought to result from the dehydration of subducting slabs. NKTZ has a higher water content in the lower crust than other regions do because there is no Philippine Sea plate (PHS) seismic slab beneath NKTZ. In other regions, it is estimated that the mantle wedge above the seismic Philippine Sea slab prevents the water dehydrated from the slab from rising to the lower crust, and that the lithosphere within PHS itself prevents the water dehydrated from the Pacific plate from rising up through it.  相似文献   

9.
Upper mantle shear wave anisotropy under stations in southern Mexico was measured using records of SKS phases. Fast polarization directions where the Cocos plate subducts subhorizontally are oriented in the direction of the relative motion between the Cocos and North American plates, and are trench-perpendicular. This pattern is interpreted as subslab entrained flow, and is similar to that observed at the Cascadia subduction zone. Earlier studies have pointed out that both regions have in common the young age of the subducting lithosphere. Changes in the orientation of the fast axes are observed where the subducting plates change dip and/or are torn, and are thus indicative of 3-D flow around the slab edges. They are consistent with slab rollback, as previously shown by other authors. Some stations located away from the plate boundaries have their fast directions controlled by the absolute motion of the North American plate. The fast axis for station ZAIG, located in the Mesa Central, is oriented WNW-ESE and is different from all the other measurements in this study.  相似文献   

10.
Influence of fluids and magma on earthquakes: seismological evidence   总被引:3,自引:0,他引:3  
In this paper, we present seismological evidence for the influence of fluids and magma on the generation of large earthquakes in the crust and the subducting oceanic slabs under the Japan Islands. The relationship between seismic tomography and large crustal earthquakes (M=5.7-8.0) in Japan during a period of 116 years from 1885 to 2000 is investigated and it is found that most of the large crustal earthquakes occurred in or around the areas of low seismic velocity. The low-velocity zones represent weak sections of the seismogenic crust. The crustal weakening is closely related to the subduction process in this region. Along the volcanic front and in back-arc areas, the crustal weakening is caused by active volcanoes and arc magma resulting from the convective circulation process in the mantle wedge and dehydration reactions in the subducting slab. In the forearc region of southwest Japan, fluids are suggested in the 1995 Kobe earthquake source zone, which have contributed to the rupture nucleation. The fluids originate from the dehydration of the subducting Philippine Sea slab. The recent 2001 Geiyo earthquake (M=6.8) occurred at 50 km depth within the subducting Philippine Sea slab, and it was also related to the slab dehydration process. A detailed 3D velocity structure is determined for the northeast Japan forearc region using data from 598 earthquakes that occurred under the Pacific Ocean with hypocenters well located with SP depth phases. The results show that strong lateral heterogeneities exist along the slab boundary, which represent asperities and results of slab dehydration and affect the degree and extent of the interplate seismic coupling. These results indicate that large earthquakes do not strike anywhere, but only anomalous areas which can be detected with geophysical methods. The generation of a large earthquake is not a pure mechanical process, but is closely related to physical and chemical properties of materials in the crust and upper mantle, such as magma, fluids, etc.  相似文献   

11.
Dapeng  Zhao  M. Santosh    Akira  Yamada 《Island Arc》2010,19(1):4-16
We synthesized information from recent high-resolution tomographic studies of large crustal earthquakes which occurred in the Japanese Islands during 1995–2008. Prominent anomalies of low-velocity and high Poisson's ratio are revealed in the crust and uppermost mantle beneath the mainshock hypocenters, which may reflect arc magma and fluids that are produced by a combination of subducting slab dehydration and corner flow in the mantle wedge. Distribution of 164 crustal earthquakes ( M 5.7–8.0) that occurred in Japan during 1885–2008 also shows a correlation with the distribution of low-velocity zones in the crust and uppermost mantle. A qualitative model is proposed to explain the geophysical observations recorded so far in Japan. We consider that the nucleation of a large earthquake is not entirely a mechanical process, but is closely related to the subduction dynamics and physical and chemical properties of materials in the crust and upper mantle; in particular, the arc magma and fluids.  相似文献   

12.
Li  Wei  Chen  Yun  Tan  Ping  Yuan  Xiaohui 《中国科学:地球科学(英文版)》2020,63(5):649-661
The Pamir plateau, located north of the western syntaxis of the India-Eurasia collision system, is regarded as one of the most possible places of the ongoing continental deep subduction. Based on a N-S trending linear seismic array across the Pamir plateau, we use the methods of the harmonic analysis of receiver functions and the cubic spline interpolation of surface wave dispersions to coordinate their resolutions, and perform a joint inversion of these datasets to construct a 2-D S-wave velocity model of the crust and uppermost mantle there. A spatial configuration among the intermediate-depth seismicity, Moho topography, and low-velocity anomalies within the crust and upper mantle is revealed, which provides new seismological constraints on the geodynamic processes of the continental subduction. These results not only further confirm the deep subduction of the Asian continental lower crust beneath the Pamir plateau, but also indicate the importance of the metamorphic dehydration of the subducting continental crustal material in the genesis of the intermediate-depth seismicity and the crustal deformation.  相似文献   

13.
本文通过地震层析成像研究获得了华北克拉通及其东邻地区(30°N-50°N,95°E -145°E)1°×1°的P波速度扰动图像.结果显示,在西太平洋俯冲带地区,上地幔中西倾的板片状高速异常体与其上方的低速异常区构成俯冲带与上覆地幔楔的典型速度结构式样.俯冲板片高速体在约300~400 km深度范围内被低速物质充填,暗示俯冲板片可能发生了断离.在华北克拉通地区的上地幔中发现三个东倾排列的高速异常带.在此基础上,本文构建了华北克拉通及其东邻西太平洋活动大陆边缘地区的上地幔速度结构模式图,并据此探讨克拉通岩石圈减薄与西太平洋活动大陆边缘的深部动力学联系.本文认为,太平洋板片的俯冲(断离),触发热地幔物质上涌并在上覆地幔楔中形成对流,使克拉通岩石圈受到改造(底侵与弱化).随着俯冲板片后撤,地幔楔中的对流场以及对岩石圈改造的影响范围均随之东移,最终导致华北克拉通岩石圈自下而上、从西向东分三个阶段依次拆沉减薄.这一模式能很好地解释现今克拉通岩石圈自西向东呈台阶状减薄的深部现象.  相似文献   

14.

中国东北地区在古生代期间以众多微陆块的拼合以及古亚洲洋的闭合为特征,其后又经历了中-新生代太平洋构造域及中生代蒙古-鄂霍茨克构造域的叠加与改造,以致东北地区的构造行迹显得极为复杂,而大兴安岭重力梯级带及其西部地区构造演化是否与西太平洋俯冲有关仍然存在争议.本研究利用分布于中国东北、华北地区以及韩国、日本等部分台网所接收的近震与远震走时数据获得了中国东北地区壳幔精细的三维P波速度结构.成像结果显示,太平洋板块持续西向俯冲,俯冲板片的前缘停滞在大兴安岭-太行山重力梯度带以东区域的地幔转换带之中;长白山火山区上地幔存在着显著的低速异常体,推测西太平洋板块的深俯冲脱水导致了上地幔底部岩石的熔点降低,从而形成了大范围的部分熔融物质上涌.通过分析上地幔的速度结构,我们认为由于太平洋板块的大规模西向深俯冲,在大地幔楔中发生板片脱水、低速热物质上涌等复杂的地球动力学过程;俯冲板片前缘带动上地幔中不均匀分布的地幔流强烈作用于上部的岩石圈,这对东北地区深部壳幔结构乃至大兴安岭重力梯级带的形成、演化有着重要的影响.

  相似文献   

15.

天山造山带作为世界上陆内最大的造山带之一,现今地震活动频繁,造山运动强烈,是开展陆内造山和内陆地震活动研究的天然试验场.本文利用整个天山造山带地区国内及国际台网的108个地震台站连续三年的背景噪声资料,提取了8~50 s周期的瑞利面波相速度频散曲线,并构建了整个天山造山带地区的二维瑞利面波相速度与方位各向异性分布图像.结果表明:浅部结构与地表的地质构造单元具有较大的相关性.低波速异常主要分布于沉积层厚度较大的盆地地区,而高波速异常主要分布于构造活动比较活跃的山脉地区.东天山地区中下地壳存在比较弱的低波速异常,而塔里木盆地和准噶尔盆地汇聚边缘的上地幔区域则表现为明显的高波速异常,各向异性快波方向呈现近NS向的特征,暗示着塔里木盆地和准噶尔盆地的岩石圈已经俯冲至东天山的下方.中天山地区的中下地壳至上地幔区域均呈现为明显的低波速异常,且各向异性快波方向变化比较复杂,表明中天山地区的整个岩石圈结构已经弱化,热物质上涌可能对介质的方位各向异性有一定的影响.西天山及帕米尔高原的上地幔区域存在低波速异常,各向异性表现为NW-SE方向,可能与欧亚板块的大陆岩石圈南向俯冲有关.塔里木盆地内部存在相对弱的低波速异常,推测塔里木盆地可能已经受到上涌的地幔热物质的侵蚀和破坏.

  相似文献   

16.
Using teleseismic data recorded along a transect, which we call VEOX (for Veracruz-Oaxaca seismic line), of 46 broadband stations installed across the Isthmus of Tehuantepec in southern Mexico, we obtained receiver functions and stacked them to study the Moho topography and back projected them to visualize the subducted slab geometry beneath the isthmus. We observed a back-azimuth dependent Moho thickness across the transect, particularly beneath the Los Tuxtlas Volcanic Field. Also, we observed the Cocos plate which subducts with an angle of 26° between 140 and 310?km from the trench. Comparison with regional seismicity indicates that it occurs below the oceanic crust.  相似文献   

17.
P-wave slowness and azimuth anomalies at LASA are critically dependent on the array configuration. This agrees with the interpretation that the anomalies arise by scattering at small-scale randomly distributed inhomogeneities in the crust and uppermost mantle beneath the array. Of particular importance is the result that numerous configurations can be chosen which yield ( dT/dΔ, ?) anomalies which are inconsistent with recent interpretations including a lateral inhomogeneity at the base of the mantle beneath Hawaii. Also configurations giving ( dT/dΔ, ?) anomalies inconsistent with the existence of mantle plumes under Iceland or the Galapagos Islands are found.  相似文献   

18.
Anomalies of electrical conductivity are considered in relation to other geophysical parameters, such as seismic wave velocity, attenuation, seismicity and density, and to tectonic features. In the case of active subduction zones there appears to be a good correlation between low conductivity and the seismic quality factor Q. Beneath western North America, a conductive zone in the uppermost mantle apparently is controlled by the thickness and severity of the low-velocity layer. Anomalies in conductivity beneath rift valleys can be related to regions of intermediate seismic P-wave velocity, typically about 7.0 km/sec, which is suggestive of partial melting of mantle material. Within the continental crust, anomalies in conductivity are not, in general, thermally controlled, but they can show correlations with seismicity, and may indicate intra-plate boundaries.  相似文献   

19.
A tomographic study of the V p and V p/V s structures in the crust and upper mantle beneath the Taiwan region of China is conducted by simultaneous inversion of P and S arrival times. Compared with the previous tomographic results, the spherical finite difference technique is suitable for the strong heterogeneous velocity structure, and may improve the accuracy in the travel time and three-dimensional ray tracing calculations. The V p and V p/V s structures derived from joint inversion and the relocated earthquakes can provide better constraints for analyzing the lateral heterogeneity and deep tectonic characters in the crust and upper mantle. Our tomographic results reveal significant relations between the seismic wavespeed structure and the tectonic characters. In the shallow depth, sedimentary basins and orogen show distinct wavespeed anomalies, with low V p, high V p/V s in basins and high V p, low V p/V s in orogen. As the suture zone of Eurasian Plate and Philippine Sea Plate, Longitudinal Valley is characterized by a significant high V p/V s anomaly extending to the middle-lower crust and upper mantle, which reflects the impact of rock cracking, partial melting, and the presence of fluids. In the northeast Taiwan, the V p, V p/V s anomalies and relocated earthquakes depict the subducting Philippine Sea Plate under the Eurasian Plate. The high V p of oceanic plate and the low V p, high V p/V s atop the subducted oceanic plate extend to 80 km depth. Along the east-west profiles, the thickness of crust reaches 60 km at the east of Central Range with eastward dipping trend, which reveals the eastward subduction of the thickened and deformed crust of the Eurasian continental plate. Supported by Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-234-2), National Basic Research Program of China (Grant No. 2007CB411701), National High Technology Research and Development Program of China (Grant No. 2006AA09A101-0201) and National Natural Science Foundation of China (Grant Nos. 40804016, 40704013)  相似文献   

20.
P-wave arrival times of both regional and teleseismic earthquakes were inverted to obtain mantle structures of East Asia.No fast(slab) velocity anomalies was not find beneath the 660-km discontinuity through tomography besides a stagnant slab within the transition zone.Slow P-wave velocity anomalies are present at depths of 100-250 km below the active volcanic arc and East Asia.The western end of the flat stagnant slab is about 1 500 km west to active trench and may also be correlated with prominent surface topographic break in eastern China.We suggested that active mantle convection might be operating within this horizontally expanded "mantle wedge" above both the active subducting slabs and the stagnant flat slabs beneath much of the North China plain.Both the widespread Cenozoic volcanism and associated extensional basins in East Asia could be the manifestation of this vigorous upper mantle convection.Cold or thermal anomalies associated with the stagnant slabs above the 660-km discontinuity have not only caused a broad depression of the boundary due to its negative Clapeyron slope but also effectively shielded the asthenosphere and continental lithosphere above from any possible influence of mantle plumes in the lower mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号