首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a recipe for predicting strong ground motions based on a characterization of the source model for future crustal earthquakes. From recent developments of waveform inversion of strong motion data used to estimate the rupture process, we have inferred that strong ground motion is primarily related to the slip heterogeneity inside the source rather than average slip in the entire rupture area. Asperities are characterized as regions that have large slip relative to the average slip on the rupture area. The asperity areas, as well as the total rupture area, scale with seismic moment. We determined that the areas of strong motion generation approximately coincide with the asperity areas. Based on the scaling relationships, the deductive source model for the prediction of strong ground motions is characterized by three kinds of parameters: outer, inner, and extra fault parameters. The outer fault parameters are defined as entire rupture area and total seismic moment. The inner fault parameters are defined as slip heterogeneity inside the source, area of asperities, and stress drop on each asperity based on the multiple-asperity model. The pattern of rupture nucleation and termination are the extra fault parameters that are related to geomorphology of active faults. We have examined the validity of the earthquake sources constructed by our recipe by comparing simulated and observed ground motions from recent inland crustal earthquakes, such as the 1995 Kobe and 2005 Fukuoka earthquakes.  相似文献   

2.
3.
—The 1952 Kamchatka earthquake is among the largest earthquakes of this century, with an estimated magnitude of M w = 9.0. We inverted tide gauge records from Japan, North America, the Aleutians, and Hawaii for the asperity distribution. The results show two areas of high slip. The average slip is over 3 m, giving a seismic moment estimate of 155×1020Nm, or M w = 8.8. The 20th century seismicity of the 1952 rupture zone shows a strong correlation to the asperity distribution, which suggests that the large earthquakes (M > 7) are controlled by the locations of the asperities and that future large earthquakes will also recur in the asperity regions.  相似文献   

4.
The MW7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture. This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau, where eight earthquakes of MS >7.0 have occurred in the past 25 years. Here, we combined interferometric synthetic aperture radar, GPS, and teleseismic data to study the coseismic slip distribution, fault geometry, and dynamic source rupture process of the Maduo earthquake. We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°. There was slight bending at the western end and two branches at the eastern end. The maximum slip is located near the eastern bending area on the northern branch of the fault system. The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions. The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 MW6.8 Yushu earthquake, indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block.  相似文献   

5.
Dense strong motion observation networks provided us with valuable data for studying strong motion generation from large earthquakes. From kinematic waveform inversion of seismic data, the slip distribution on the fault surface of large earthquakes is known to be spatially heterogeneous. Because heterogeneities in the slip and stress drop distributions control the generation of near-source ground motion, it is important to characterize these heterogeneities for past earthquakes in constructing a source model for reliable prediction of strong ground motion. The stress changes during large earthquakes on the faults recently occurring in Japan are estimated from the detailed slip models obtained by the kinematic waveform inversion. The stress drops on and off asperities are summarized on the basis of the stress change distributions obtained here. In this paper, we define the asperity to be a rectangular area whose slip is 1.5 or more times larger than the average slip over the fault according to the previous study for inland crustal earthquakes. The average static stress drops on the asperities of the earthquakes studied here are in the range 6?C23?MPa, whereas those off the asperities are below 3?MPa. We compiled the stress drop on the asperities together with a data set from previous studies of other inland earthquakes in Japan and elsewhere. The static stress drop on the asperity depends on its depth, and we obtained an empirical relationship between the static stress drop and the asperity??s depth. Moreover, surface-breaking asperities seemed to have smaller stress drops than buried asperities. Simple ground motion simulations using the characterized asperity source models reveal that deep asperities generate larger ground motion than shallow asperities, because of the different stress drops of the asperities. These characteristics can be used for advanced source modeling in strong ground motion prediction for inland crustal earthquakes.  相似文献   

6.
The various useful source-parameter relations between seismic moment and common use magnitude lg(M 0) andM s,M L,m b; between magnitudesMs andM L,M s andm b,M L andm b; and between magnitudeM s and lg(L) (fault length), lg (W) (fault width), lg(S) (fault area), lg(D) (average dislocation);M L and lg(f c) (corner frequency) have been derived from the scaling law which is based on an “average” two-dimensional faulting model of a rectangular fault. A set of source-parameters can be estimated from only one magnitude by using these relations. The average rupture velocity of the faultV r=2.65 km/s, the total time of ruptureT(s)=0.35L (km) and the average dislocation slip rateD=11.4 m/s are also obtained. There are four strong points to measure earthquake size with the seismic moment magnitudeM w.
  1. The seismic moment magnitude shows the strain and rupture size. It is the best scale for the measurement of earthquake size.
  2. It is a quantity of absolute mechanics, and has clear physical meaning. Any size of earthquake can be measured. There is no saturation. It can be used to quantify both shallow and deep earthquakes on the basis of the waves radiated.
  3. It can link up the previous magnitude scales.
  4. It is a uniform scale of measurement of earthquake size. It is suitable for statistics covering a broad range of magnitudes. So the seismic moment magnitude is a promising magnitude and worth popularization.
  相似文献   

7.
主要研究2009年7月24日西藏尼玛西南MS5.6地震的基本参数、地震序列特征、震源参数、发震构造等;利用震中附近600km范围内台站测定参数研究地震的震源机制解,与哈佛大学给出的震源机制解较一致,且与通过现场考察的发震断层走向具有一致性。研究认为本次地震发生在冈底斯山—拉萨块体内部,断裂为NNW向,主要受张应力作用产生左旋走滑正断层活动。此外还分析了震前地震学条带异常特征,结束表明,震前1年出现NW向条带非常显著,研究结论为该地区今后地震预测提供科学依据。  相似文献   

8.
This study investigates the kinematics of the rupture process of the M L 7.3 Chi–Chi, Taiwan, earthquake on September 21, 1999. By applying the proposed hybrid homomorphic deconvolution method to deconvolve teleseismic broadband P-wave displacement recordings of the earthquake, this study derives the apparent source time functions (ASTFs) at ten stations located around the epicenter. To further characterize the fault, the kinematic history of the rupture was inverted from ASTFs using a genetic algorithm, coupled with nonlinear iterative technique. The calculated ASFTs reveal that the total rupture event lasted for approximately 27 s. Static slip distribution images indicate that most slip occurred at shallower portions of the fault plane, especially 20–55 km north of the epicenter. The maximum slip reached 20 m at 45 km north of the epicenter, and the average slip throughout the observed rupture area was approximately 2 m. Large asperities on the fault appeared at 25–35 km and 40–50 km north of the hypocenter, and coincided with relatively high rupture velocity. This suggests that the earthquake’s energy may have been released quickly. The rupture velocity decreased upon encountering an asperity, and increased again after passing the asperity. This implies that the rupture required more time to overcome the resistances of the asperities. The maximum rupture velocity was 3.8 km/s, while the average rupture velocity was approximately 2.2 km/s. The rise time distribution suggests that larger slip amplitudes generally correspond to shorter rise times on the subfaults.  相似文献   

9.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   

10.
The MS 6.9 Menyuan earthquake in Qinghai Province, west China is the largest earthquake by far in 2022. The earthquake occurs in a tectonically active region, with a background b-value of 0.87 within 100 ?km of the epicenter that we derived from the unified catalog produced by China Earthquake Networks Center since late 2008. Field surveys have revealed surface ruptures extending 22 ?km along strike, with a maximum ground displacement of 2.1 ?m. We construct a finite fault model with constraints from InSAR observations, which showed multiple fault segments during the Menyuan earthquake. The major slip asperity is confined within 10 ?km at depth, with the maximum slip of 3.5 ?m. Near real-time back-projection results of coseismic radiation indicate a northwest propagating rupture that lasted for ~10 ?s. Intensity estimates from the back-projection results show up to a Mercalli scale of IX near the ruptured area, consistent with instrumental measurements and the observations from the field surveys. Aftershock locations (up to January 21, 2022) exhibit two segments, extending to ~20 ?km in depth. The largest one reaches MS 5.3, locating near the eastern end of the aftershock zone. Although the location and the approximate magnitude of the mainshock had been indicated by previous studies based on paleoearthquake records and seismic gap, as well as estimated stressing rate on faults, significant surface-breaching rupture leads to severe damage of the high-speed railway system, which poses a challenge in accurately assessing earthquake hazards and risks, and thus demands further investigations of the rupture behaviors for crustal earthquakes.  相似文献   

11.
Maximum earthquake size varies considerably amongst the subduction zones. This has been interpreted as a variation in the seismic coupling, which is presumably related to the mechanical conditions of the fault zone. The rupture process of a great earthquake indicates the distribution of strong (asperities) and weak regions of the fault. The rupture process of three great earthquakes (1963 Kurile Islands, MW = 8.5; 1965 Rat Islands, MW = 8.7; 1964 Alaska, MW = 9.2) are studied by using WWSSN stations in the core shadow zone. Diffraction around the core attenuates the P-wave amplitudes such that on-scale long-period P-waves are recorded. There are striking differences between the seismograms of the great earthquakes; the Alaskan earthquake has the largest amplitude and a very long-period nature, while the Kurile Islands earthquake appears to be a sequence of magnitude 7.5 events.The source time functions are deconvolved from the observed records. The Kurile Islands rupture process is characterized by the breaking of asperities with a length scale of 40–60 km, and for the Alaskan earthquake the dominant length scale in the epicentral region is 140–200 km. The variation of length scale and MW suggests that larger asperities cause larger earthquakes. The source time function of the 1979 Colombia earthquake (MW = 8.3) is also deconvolved. This earthquake is characterized by a single asperity of length scale 100–120 km, which is consistent with the above pattern, as the Colombia subduction zone was previously ruptured by a great (MW = 8.8) earthquake in 1906.The main result is that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities (e.g. the Alaskan earthquake), while the zones with the smaller great earthquakes (e.g. Kurile Islands) have smaller scattered asperities.  相似文献   

12.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

13.
-- We investigate the impact of different rupture and attenuation models for the Cascadia subduction zone by simulating seismic hazard models for the Pacific Northwest of the U.S. at 2% probability of exceedance in 50 years. We calculate the sensitivity of hazard (probabilistic ground motions) to the source parameters and the attenuation relations for both intraslab and interface earthquakes and present these in the framework of the standard USGS hazard model that includes crustal earthquakes. Our results indicate that allowing the deep intraslab earthquakes to occur anywhere along the subduction zone increases the peak ground acceleration hazard near Portland, Oregon by about 20%. Alternative attenuation relations for deep earthquakes can result in ground motions that differ by a factor of two. The hazard uncertainty for the plate interface and intraslab earthquakes is analyzed through a Monte-Carlo logic tree approach and indicates a seismic hazard exceeding 1 g (0.2 s spectral acceleration) consistent with the U.S. National Seismic Hazard Maps in western Washington, Oregon, and California and an overall coefficient of variation that ranges from 0.1 to 0.4. Sensitivity studies indicate that the paleoseismic chronology and the magnitude of great plate interface earthquakes contribute significantly to the hazard uncertainty estimates for this region. Paleoseismic data indicate that the mean earthquake recurrence interval for great earthquakes is about 500 years and that it has been 300 years since the last great earthquake. We calculate the probability of such a great earthquake along the Cascadia plate interface to be about 14% when considering a time-dependent model and about 10% when considering a time-independent Poisson model during the next 50-year interval.  相似文献   

14.
Vertical records are critically important when determining the rupture model of an earthquake, especially a thrust earthquake. Due to the relatively low fitness level of near-field vertical displacements, the precision of previous rupture models is relatively low, and the seismic hazard evaluated thereafter should be further updated. In this study, we applied three-component displacement records from GPS stations in and around the source region of the 2013 MW6.6 Lushan earthquake to re-investigate the rupture model.To improve the resolution of the rupture model, records from both continuous and campaign GPS stations were gathered, and secular deformations of the GPS movements were removed from the records of the campaign stations to ensure their reliability. The rupture model was derived by the steepest descent method(SDM), which is based on a layered velocity structure. The peak slip value was about 0.75 m, with a seismic moment release of 9.89 × 10~(18) N·m, which was equivalent to an M_W6.6 event. The inferred fault geometry coincided well with the aftershock distribution of the Lushan earthquake. Unlike previous rupture models, a secondary slip asperity existed at a shallow depth and even touched the ground surface. Based on the distribution of the co-seismic ruptures of the Lushan and Wenchuan earthquakes, post-seismic relaxation of the Wenchuan earthquake, and tectonic loading process, we proposed that the seismic hazard is quite high and still needs special attention in the seismic gap between the two earthquakes.  相似文献   

15.
通过对2003年1月1日—2013年4月1日芦山地震前震源区中小地震震源机制解的分析,发现不同阶段的震源机制解在一定程度上反映了强震孕育过程中构造应力场随时间的变化。震源区中小地震的P轴方位角C_V值在芦山M7.0地震发生前有一个上升-下降-上升的过程,只是相比于汶川8.0级地震前C_V值的下降-上升过程经历了更长的时间,这表明四川芦山M7.0地震的孕育经历了长时间的应力积累,与许多研究结果相一致。2007年1月1日—2014年4月1日C_V值空间分布的非均匀性特征在龙门山断裂带南段有显著的增强与减弱过程,对于发震地点可能有一定的指示意义。  相似文献   

16.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   

17.
The Load/Unload Response Ratio (LURR) method is a proposed technique to predict earthquakes that was first put forward by Yin (1987). LURR is based on the idea that when an area enters the damage regime, the rate of seismic activity during loading of the tidal cycle increases relative to the rate of seismic activity during unloading in the months to one year preceding a large earthquake. Since earth tides generally contribute the largest temporal variations in crustal stress, it seems plausible that earth tides would trigger earthquakes in areas that are close to failure (e.g., Vidale et al., 1998). However, the vast majority of studies have shown that earth tides do not trigger earthquakes (e.g., Vidale et al., 1998; Heaton, 1982; Rydelek et al., 1992). In this study, we conduct an independent test of the LURR method, since there would be important scientific and social implications if it were proven to be a robust method of earthquake prediction. Smith and Sammis (2004) undertook a similar study and found no evidence that there was predictive significance to the LURR method. We have repeated calculations of LURR for the Northridge earthquake in California, following both the parameters of X.C. Yin (personal communication) and the somewhat different ones of Smith and Sammis (2004). Though we have followed both sets of parameters closely, we have been unable to reproduce either set of results. Our examinations have shown that the LURR method is very sensitive to certain parameters. Thus it seems likely that the discrepancies between our results and those of previous studies are due to unaccounted for differences in the calculation parameters. A general agreement was made at the 2004 ACES Workshop in China between research groups studying LURR to work cooperatively to resolve the differences in methods and results, and thus permit more definitive conclusions on the potential usefulness of the LURR method in earthquake prediction.  相似文献   

18.
We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502–1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885–1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e. MILH?=?7.8 and MIW?=?7.6 considering surface wave and moment magnitude, respectively) than the value M?=?8.2 listed in the considered catalog. These values are more in agreement with the value M S?=?7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1–11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167–1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), where most of the seismic moment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH?=?6.9 and MIW?=?6.8).  相似文献   

19.
The Bob-Tangol earthquake of magnitude 5.8 (MS), occurred in southeastern Iran on 19 December 1977, not far from the region where the 1896 and 1933 earthquakes caused considerable damage and destruction. The shock was associated with a 19.5-km fault break at the surface with a maximum 20 cm right-lateral strike-slip movement along an Early Quaternary geological fault. Results of the field investigation together with the fault plane solution and epicentre location of the main shock are presented here in order to give a seismotectonic view of the event.Surface rupture and fault plane solution of this medium-magnitude earthquake demonstrate a considerable amount of right-lateral movement along a major Early Quaternary high-angle reverse fault. This change in fault behaviour and slip vector may indicate that evidence of Early Quaternary movement cannot always provide a good clue to present-day crustal deformation.  相似文献   

20.
The 1963 great Kurile earthquake was an underthrust earthquake occurred in the Kurile?CKamchatka subduction zone. The slip distribution of the 1963 earthquake was estimated using 21 tsunami waveforms recorded at tide gauges along the Pacific and Okhotsk Sea coasts. The extended rupture area was divided into 24 subfaults, and the slip on each subfault was determined by the tsunami waveform inversion. The result shows that the largest slip amount of 2.8?m was found at the shallow part and intermediate depth of the rupture area. Large slip amounts were found at the shallow part of the rupture area. The total seismic moment was estimated to be 3.9?×?1021?Nm (Mw 8.3). The 2006 Kurile earthquake occurred right next to the location of the 1963 earthquake, and no seismic gap exists between the source areas of the 1963 and 2006 earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号