共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
由于非等间隔GM(1,1)灰色模型对于处理数据量小且表达信息不确定的数据具有优越性,因此广泛应用于石油天然气勘探、机床故障诊断、电力负荷预测、大坝安全监测等领域。基于非等间隔GM(1,1)灰色模型理论,利用某小区建筑物沉降观测的实测数据,建立了适合该小区建筑物沉降预测的灰色模型。通过对比理论预测值和实测值,并进行模型对应的精度评定分析,结果表明,此模型适用于该建筑物沉降预测分析的研究。 相似文献
3.
4.
5.
灰色系统理论在海堤沉降预测中的应用 总被引:6,自引:2,他引:6
利用灰色系统理论,对秦山核电站一期海堤沉降进行了预测,以较少的观测样本建立了新陈代谢数列,经后验差检验,观测精度达到一级。由此证明,用GM(1,1)模型进行预测,建模方便,预测精度高,在大型建筑物变形监测中有较大的实用价值。 相似文献
6.
7.
8.
灰色预测在建筑物沉降变形分析中的应用 总被引:31,自引:11,他引:31
本文将灰色系统理论的GM(1,1)模型应用于建筑物沉降变形数据分析,结合南宁市民生广场沉降观测实例,进行沉降预测结果的分析和检验,充分证实了在建筑物沉降变形分析中应用灰色预测方法的可行性。 相似文献
9.
10.
基于GM(1,1)等维新息模型的矿山沉降预测 总被引:1,自引:0,他引:1
介绍了GM(1,1)灰色模型的建立过程及模型的精度评定方法,采用等维新息模型对某矿工业广场的沉降趋势进行了预测,并用残差序列建立GM(1,1)模型进行修正,通过与实测的结果对比表明,模型的预测具有较高的精度,模型可靠合理。 相似文献
11.
为实现各种预测模型的优势互补,提高沉降预测精度,分析单项沉降预测模型各自的特点,将组合预测方法应用到高速铁路沉降变形预测分析中;介绍组合预测基本方法和常用的定权方法,提出模型建立的步骤和具体原则,研究出一种变权最优预测的方法。通过工程实例验证表明,该组合方法预测精度较高,拟合能力更强,可作为高速铁路的沉降预测模型。 相似文献
12.
为了研究地表非采动沉降预测的规律,介绍了灰色预测理论模型的建模方法与模型精度评定方法,阐述了采用GM(1,1)等维新息模型进行沉降数据分析的特点,结合水文资料分析引起下沉的主要原因;并以某工程的沉降观测实例,证实了非采动沉降监测中采用灰色GM(1,1)预测方法的可行性。 相似文献
13.
14.
由于卫星钟存在频率高、敏感性强、极易受到外界影响从而导致观测数据波动大,预测结果精度低的问题,利用幂函数变换法对初始观测数据进行变换预处理,从而提高观测数据的平顺度.由此提出一种基于幂函数变换的GM(1,1)模型,选用北斗卫星导航系统(BDS)卫星钟差进行插值和预报,并且进行了精度验证.实验结果表明:Lagrange插值方法可以满足高精度BDS的钟差的插值需要;利用幂函数变换的GM(1,1)模型相比传统模型精度有效提高了,而且当改进模型和传统模型预报值越接近实际值,则幂函数改进的GM(1,1)模型精度更高,适用性更强,对BDS卫星钟差预报具有实际参考价值. 相似文献
15.
宁卫远 《测绘与空间地理信息》2013,36(6):167-170
科学、准确、及时地分析和预报建筑物的沉降状况,对其施工和运营极为重要,沉降监测的研究成果也是检验设计和施工的重要手段。由于自然环境的多变性、施工现场的复杂性等各种主、客观因素影响,监测数据有时会出现间断,为了分析沉降规律,需要对缺失数据进行插补。考虑到沉降监测非等时间间隔的特点,建立非等间距GM(1,1)模型及优化背景值的GM(1,1)模型,应用于沉降监测缺失资料的插补工作中,取得了较满意的监测间断数据插补值。 相似文献
16.
17.
变异时序回归GM(1,1)模型 总被引:1,自引:0,他引:1
鉴于在GM(1,1)预测模型中,灰参数与背景值导致的GM(1,1)模型的残差,本文提出将残差引入到时序中,对时序进行变异,利用不同的曲线回归方程对变异时序进行估计.基于对不同回归方程估计结果的误差分析,选用最佳的回归方程作为GM(1,1)变异时序预测方程;并将预测结果作为GM(1,1)模型的变量k.实例计算表明,变异时... 相似文献
18.
19.
针对传统的单一模型和非线性GM(1,1)-AR组合模型无法实现对非平稳、含噪时间序列信号进行优化处理的问题,该文提出了一种新的基于小波的GM(1,1)-AR模型预测算法。采用小波变换原理对监测数据进行消噪处理和不同频带的分离,有效地获取了实际变形量;利用GM(1,1)模型和AR时序分析模型对具有确定性的趋势项和不确定性的随机项进行建模组合,较好地综合了灰色模型拟合功能强大和时间序列善于处理细节信息两者优势。通过工程实例对比分析结果表明:基于小波的GM(1,1)-AR模型不仅有效剔除了多余噪声,还利用各种模型有机嵌套组合实现优势互补,新算法预测结果比各单一模型、非线性GM(1,1)-AR模型结果更为精确。 相似文献