首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Some of the characteristic features of thermospheric meridional winds during equinoctial period, associated with equatorial spread F (ESF) and their possible role in the triggering of ESF are presented through case studies of observational events under different geophysical conditions that essentially control the post-sunset F-layer height (h′F) rise. The present study reveals that the polarity and magnitude of the meridional winds become significant with the equatorward wind being present when the h′F is below a critical height for the instability to get triggered. The distinctly different characteristic features of the meridional winds during ESF and non-ESF events are presented and discussed.  相似文献   

2.
大气重力波产生的大尺度赤道电离层扰动   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了大气重力波产生的大尺度赤道电离层扰动的性质.当重力波的传播方向与磁场方向倾斜相交时,重力波在F区产生行进电离层扰动.当重力波垂直于磁场传播时,能触发等离子体Rayleigh-Taylor不稳定性,形成大尺度赤道扩展F不均匀体.重力波引起的扩展F主要出现于晚上,行进电离层扰动则可能出现于任何时间.本文建立了行进电离层扰动和大尺度赤道扩展F的统一理论模型,深入全面地揭示了电离层扰动的性质.  相似文献   

3.
《Journal of Atmospheric and Solar》2002,64(12-14):1531-1543
Jicamarca unattended long term investigations of the ionosphere and atmosphere radar observations of equatorial spread F (ESF) plasma irregularities made between August 1996 and April 2000 are analyzed statistically. Interpretation of the data is simplified by adopting a taxonomy of echo types which distinguishes between bottom-type, bottomside, topside, and post-midnight irregularities. The data reveal patterns in the occurrence of ESF in the Peruvian sector that are functions of season, solar flux, and geomagnetic activity. We confirm earlier work by Fejer et al. (J. Geophys. Res. 104 (1999) 19,859) showing that the quiet-time climatology of the irregularities is strongly influenced by the climatology of the zonal ionospheric electric field. Under magnetically quiet conditions, increasing solar flux implies greater pre-reversal enhancement amplitudes and, consequently, irregularity appearances at earlier times, higher initial altitudes, and higher peak altitudes. Since the post-reversal westward background electric field also grows stronger with increasing solar flux, spread F events also decay earlier in solar maximum than in solar minimum. Variation in ESF occurrence during geomagnetically active periods is consistent with systematic variations in the electric field associated with the disturbance dynamo and prompt penetration described by Fejer and Scherliess (J. Geophys. Res. 102 (1997) 24,047) and Scherliess and Fejer (J. Geophys. Res. 102 (1997) 24,037). Quiet-time variability in the zonal electric field contributes significantly to variability in ESF occurrence. However, no correlation is found between the occurrence of strong ESF and the time history of the zonal electric field prior to sunset.  相似文献   

4.
The possible role, on L-band scintillation activity, played by the nighttime magnetic meridional component of the thermospheric horizontal neutral winds, the post-sunset F-layer base height, the electrical field pre-reversal enhancement (PRE) and the latitudinal gradients of the F2-layer peak density is analyzed, considering different cases of scintillation occurrence (and their latitudinal extent) during August and September 2002. The meridional winds were derived over low-latitudes from a modified form of the nonlinear time-dependent servo-model. A chain of two scintillation monitors and three digital ionosondes was operational in Brazil and used to collect, respectively, global positioning system signal amplitude scintillation and ionospheric height (hF; hpF2) and frequency (foF2) parameters. From the overall behavior in the 2 months analyzed, the results suggest that high near sunset upward vertical plasma drifts are conducive for the generation of spread-F irregularities, whereas large poleward meridional winds tend to suppress the development of plasma bubble irregularities and the occurrence of their associated scintillations. Even when generated, a reduced fountain effect, due to weak electric field PRE, acts for the bubbles to be expanded less effectively to higher latitudes. The results also reveal that high F-layer base and peak heights (at equatorial and off-equatorial latitudes), and intense gradients in the F2-peak density between the dip equator and the equatorial anomaly crests, are favorable conditions for the generation of F-region irregularities and increased scintillation activity. Other distinct features of the controlling factors in the cases of occurrence and non-occurrence of equatorial scintillations are presented and discussed.  相似文献   

5.
Ionospheric effects of a large number (51) of severe geomagnetic storms are studied using total electron content (TEC) and VHF/UHF scintillation data from Calcutta, situated near the northern crest of equatorial ionization anomaly and equatorial spread-F (ESF) data from Kodaikanal. The susceptibility of the equatorial ionosphere to develop storm time plasma density irregularities responsible for ESF and scintillation is found to be largely modulated by the local times of occurrences of main and recovery phases as seen in the Dst index. While inhibition of premidnight scintillation for lower TEC values compared to the quiet day averages is omnipresent, occurrence of scintillation for enhancements of TEC is largely dependent on initiation time and amplitude of the said deviations. An overall reduction in threshold values of h′F for observing storm induced ESF and scintillation compared to reported quiet time values is noted. The results are discussed in terms of storm time variabilities in electric fields, neutral wind system and composition changes.  相似文献   

6.
The unique geometry of the geomagnetic field lines over the equatorial ionosphere coupled with the E–W electric field causes the equatorial ionization anomaly (EIA) and equatorial spread-F (ESF). lonosonde data obtained at a chain of four stations covering equator to anomaly crest region (0.3 to 33 °N dip) in the Indian sector are used to study the role of EIA and the associated processes on the occurrence of ESF. The study period pertains to the equinoctial months (March, April, September and October) of 1991. The ratios of critical frequency of F-layer (f0F2) and electron densities at an altitude of 270 km between Ahmedabad (33 °N dip) and Waltair (20 °N dip) are found to shoot up in the afternoon hours on spread-F days showing strengthening of the EIA in the afternoon hours. The study confirms the earlier conclusions made by Raghava Rao et al. and Alex et al. that a well-developed EIA is one of the conditions conducive for the generation of ESF. This study also shows that the location of the crest is also important in addition to the strength of the anomaly.  相似文献   

7.
The work is devoted to the numerical simulation of the dynamo electric field and its effects in the Earth’s ionosphere within the scope of the thermosphere-ionosphere-protonosphere global self-consistent model developed at WD IZMIRAN. The new electric field calculation block, which was used to obtain results of the self-consistent calculations of the electric field potential generated by the dynamo effect of the thermospheric winds (the dynamo field) and the equatorial electrojet for March 22, 1987, is briefly described in this work. A comparison of the obtained results with the experimental data showed a satisfactory agreement. Moreover, the proposed model was used to calculate the diurnal variations in the ionospheric parameters for Jicamarca equatorial station under the same conditions with the help of the new block of the electric field. The results of these calculations are also presented and discussed in this work. It has been indicated that the new model satisfactorily describes the specific features of electric field distribution at the geomagnetic equator and the well-known phenomenon of equatorial electrojet.  相似文献   

8.
A comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2, which were observed by the Kokubunji, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper (MU) atmosphere radar, have been used to study the time-dependent response of the low-latitude ionosphere to geomagnetic forcing during a time series of geomagnetic storms from 22 to 26 April 1990. The reasonable agreement between the model results and data requires the modified equatorial meridional E×B plasma drift, the modified HWM90 wind, and the modified NRLMSISE-00 neutral densities. We found that changes in a flux of plasma into the nighttime equatorial F2-region from higher L-shells to lower L-shells caused by the meridional component of the E×B plasma drift lead to enhancements in NmF2 close to the geomagnetic equator. The equatorward wind-induced plasma drift along magnetic field lines, which cross the Earth equatorward of about 20° geomagnetic latitude in the northern hemisphere and about −19° geomagnetic latitude in the southern hemisphere, contributes to the maintenance of the F2-layer close to the geomagnetic equator. The nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess [Fejer, B.G., Scherliess, L., 1997. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047–24056] or Scherliess and Fejer [Scherliess, L., Fejer, B.G., 1999. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 104, 6829–6842) in combination with corrected equatorward nighttime wind-induced plasma drift along magnetic field lines in the both geomagnetic hemispheres are found to be the physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator over Manila during 22–26 April 1990. The model crest-to-trough ratios of the equatorial anomaly are used to study the relative role of the main mechanisms of the equatorial anomaly suppression for the 22–26 April 1990 geomagnetic storms. During the most part of the studied time period, a total contribution from geomagnetic storm disturbances in the neutral temperature and densities to the equatorial anomaly changes is less than that from meridional neutral winds and variations in the E×B plasma drift. It is shown that the latitudinal positions of the crests are determined by the E×B drift velocity and the neutral wind velocity.  相似文献   

9.
This work presents a new examination of the hypothesis regarding the equatorial origin of low He+ density plasma depletions (or subtroughs). For this purpose, we have conducted a detailed comparative analysis of longitudinal variations in the occurrence probabilities of subtroughs in both hemispheres and variations in the occurrence probabilities of equatorial F-region irregularities (EFIs), equatorial spread F (RFS and ESF), and equatorial plasma bubbles (EPBs). Taking into consideration the seasonal dependence and some peculiarities of magnetic field variations in different hemispheres, a conclusion has been reached regarding the similarity between longitudinal statistical occurrences of subtroughs and equatorial ionospheric F-region irregularities. In addition, another piece of evidence in favor of the similarity of the nature of the above-mentioned phenomena has been obtained. We have got a confirmation once again that low He+ density depletions (or subtroughs) can be rightfully considered as equatorial plasma “bubbles,” which can be observed at altitudes of the topside ionosphere as depletions in the He+ density.  相似文献   

10.
To study the occurrence characteristics of equatorial spread-F irregularities and their latitudinal extent, simultaneous digital ionosonde data (January–December 2001) from Trivandrum (8.2°N), Waltair (17.7°N) and Delhi (28.6°N) and 4 GHz scintillation data from Sikandarabad (26.8°N) and Chenglepet (10.4°N), and 250 MHz scintillation data from Bhopal (23.2°N) for equinoxes period are analysed. It is noted that except summer months, occurrence of spread F is always maximum at Trivandrum, minimum at Delhi and moderate at Waltair. During equinoxes and winter months. Their occurrences at higher latitude station are always conditional to their prior occurrences at lower latitudes indicating their association with the generation of equatorial plasma bubble and associated irregularities. Scintillation occurrences also follow the similar pattern. During the summer months, the spread-F occurrences are highest at equatorial location Trivandrum, moderate at Delhi and minimum at Waltair and seem to be caused by irregularities generated locally especially over Delhi.To gain forecasting capability, night-to-night occurrences of spread-F/scintillation at these locations are examined in relation to post sunset rise of h’F and upward ExB drift velocity over the magnetic equator using Trivandrum ionosonde data. It is noted that except the summer months, the spread-F at Trivandrum, Waltair and Delhi are observed only when equatorial ExB (h’F) is more than about 15 m/s (325 km), 20 m/s (350 km) and 25 m/s (375 km), respectively. With these threshold values their corresponding success rate of predictions are more than 90%, 50% and 15% at the respective locations. Whereas in the case of GHz scintillations near equator are observed only when ExB (h’F) is more than 15 m/s (325 km), whereas for low latitude, the same should be 30 m/s (400 km) and their success rate of prediction is about 90% and 30%, respectively. The intensity of 4 GHz scintillation at low latitude is also found to be positively correlated with equatorial upward ExB drift velocity values, whereas correlation is poor with that of equatorial scintillations. In conclusions, near magnetic equator threshold values of ExB or h’F can be successfully used for the night-to-night prediction of spread-F/scintillations occurrences, whereas these are necessary but not sufficient for their prediction at higher latitudes. For that some other controlling parameters like background electron density, neutral winds, gravity waves, etc. should also be examined.  相似文献   

11.
An investigation involving nonlinear numerical simulation has been undertaken based on the observations of two events involving the reversal of nighttime zonal electric field to eastward direction over equatorial region due to the overshielding effect associated with interplanetary electric field. In one of the events, the ionospheric alterations brought forth by the prompt penetration event lead to the triggering of an equatorial spread F (ESF) event around 2040 IST and a plume structure during pre-midnight hours due to overshielding effect. In another observation, the ESF was found to be absent. The two-dimensional modeling investigation revealed that the storm-induced eastward electric field during nighttime over equatorial region is a necessary but not a sufficient condition for the development of the pre-midnight plume structure in the lower F-region altitude. The large scale size (240 km) perturbation amplitude of 5% is found to be insufficient for the development of late night plume event within 2000 s. A pre-seed in varying degrees in a localized altitude region depending upon the background ionospheric conditions, is found to be required for the development of the pre-midnight plume event. The confined ESF irregularities developed in the post-evening hours in a limited altitude range are suggested to provide such seed perturbation. The importance of the pre-seeded structure for the development of pre-midnight plume event is brought out from this investigation. The roles of the electron density scale length and the peak height of the F layer in deciding the required amplitudes of perturbation are also evaluated. This, in turn, can throw light on the night-to-night variability of storm-time ESF when a typical eastward perturbation electric field is operative during pre-midnight hours. The role of off-equatorial E region conductivity is also discussed.  相似文献   

12.
The statistics of pre-midnight 5-m irregularities in the equatorial F region over São Luís is presented. The data set ranges from October 2001 to December 2008 and covers maximum solar-flux-to-minimum solar flux epoch. The variabilities in irregularity parameters, namely, height and time of their appearance in the radar echoes, with solar-flux variation are presented. The seasonal variations (combined over all years, irrespective of solar-flux) of occurrence of irregularities, occurrence of bottom-type layer (or bottom-side irregularities without plume) and bottom-side/topside plume (or bottom-side irregularities with plume) are presented. The largest occurrences of bottom-side irregularities without plume and with plume are found on April (equinox) and December (summer) months respectively. The ambient ionospheric conditions namely prereversal evening vertical drift, bottom-side density gradient and off-equatorial E region conductivity are inferred using digisonde measurements during April 2002 and December 2002. Based on these conditions and recent studies on gravity wave climatology over Brazil, it is suggested that shear in zonal plasma drift and low gravity wave activity may account for less occurrence of plume during April as compared to December months. This suggestion is quantified using numerical simulation model of collisional-interchange instability (CII) and plasma bubble.  相似文献   

13.
We investigate the effects of penetration electric fields, meridional thermospheric neutral winds, and composition perturbation zones (CPZs) on the distribution of low-latitude plasma during the 7–11 November 2004 geomagnetic superstorm. The impact on low-latitude plasma was assessed using total electron content (TEC) measurements from a latitudinally distributed array of ground-based GPS receivers in South America. Jicamarca Radio Observatory incoherent scatter radar measurements of vertical E×B drift are used in combination with the Low-Latitude IONospheric Sector (LLIONS) model to examine how penetration electric fields and meridional neutral winds shape low-latitude TEC. It is found that superfountain conditions pertain between ~1900 and 2100 UT on 9 November, creating enhanced equatorial ionization anomaly (EIA) crests at ±20° geomagnetic latitude. Large-amplitude and/or long-duration changes in the electric field were found to produce significant changes in EIA plasma density and latitudinal location, with a delay time of ~2–2.5 h. Superfountain drifts were primarily responsible for EIA TEC levels; meridional winds were needed only to create hemispherical crest TEC asymmetries. The [O/N2] density ratio (derived from the GUVI instrument, flown on the TIMED satellite) and measurements of total atmospheric density (from the GRACE satellites), combined with TEC measurements, yield information regarding a likely CPZ that appeared on 10 November, suppressing TEC for over 16 h.  相似文献   

14.
An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR) (14°N, 80°E, dip 14°N) along with other experiments, as a part of equatorial spread F (ESF) campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT) and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160/190 km, 210/257 km and 290/330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km), in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210/257 km) showed a tendency to become slightly flatter (spectral index n = –2.1 ± 0.7) as compared to the valley region (n = –3.6 ± 0.8) and the region below the F peak (n = –2.8 ± 0.5). Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160/330 km region.  相似文献   

15.
This paper provides a review on some of the electrostatic coupling effects relevant for generating/modifying plasma irregularities during nighttime in the low latitude ionosphere based on recent observations. Emphasis is given to the role of large polarization electric field associated with an unstable region affecting another region remotely located. Recent radar observations on valley region and E region irregularities from low latitudes show convincing evidence in support of effective electrostatic field coupling along the magnetic field line for their manifestation. Interestingly, the low latitude observations clearly show the ineffectiveness of plasma bubble related fringe fields in generating low latitude valley region irregularities unlike that over the dip equator. Velocity perturbations associated with the unstable low latitude E region relevant for studying the seeding of equatorial spread F are also shown. These new observations have been critically examined in the light of existing experimental knowledge and current understanding of the electrostatic coupling effects for the generation/modification of plasma irregularities in a remote region.  相似文献   

16.
利用计算机模拟研究了非均匀电场产生的赤道扩展F的时空演变。非均匀电场能在赤道电离层F区底部触发Rayleigh-Taylor不稳定性,导致等离子体泡形态。计算中非均匀电场的幅度取为0.25-1.00mV/m,所产生的等离子体泡在2000s以内就能穿过F峰达到540km的高度。所得结果阐明了非均匀电场在赤道扩展F中的作用,指出了产生等离子体泡一种可能的扰动源。由于E区和F区电场是相互影响的,从而揭示了E区和F区扰动的相互联系。  相似文献   

17.
New experimental data depicting equatorial spread-F were taken during an HF radar sounding campaign in Korhogo (Ivory Coast, 9°24N, 5°37W, dip 4°S). Range-time-intensity maps of the radar echoes have been analyzed to identify the signatures of density depletions and bottomside spread-F. Density depletions are well known features of equatorial spread-F, and are believed to emerge after the development of a Rayleigh-Taylor instability on the bottomside F-layer. A simple model is developed and used to simulate the flow of density depletions over the radar field of view. The simulation permits an interpretation of the data that yields the zonal flow velocity as a function of local time. Comparisons with previous measurements are undertaken to assess the consistency of the computational results, and qualitative arguments are presented to identify bottomside spread-F. Using the computational results as reference, a morphological study of ionograms showing spread-F is undertaken which reveals the specific signature of bottomside spread-F on ionograms recorded just after sunset.  相似文献   

18.
Equatorial plasma bubbles (EPBs) are field-aligned depletions of F-region ionospheric plasma density that grow from irregularities caused by the generalized Rayleigh–Taylor instability mechanism in the postsunset equatorial sector. Although they have been studied for some decades, they continue to be an important subject of both experimental and theoretical investigations because of their effects on trans-ionospheric radio communications.In this work, calibrated data of slant total electron content (sTEC) taken every 10 min from EGNOS System Test Bed Brazzaville (Congo), Douala (Cameroon), Lome (Togo) and N’Djamena (Chad), and International GNSS Service Ascension Island, Malindi (Kenya), and Libreville (Gabon), stations are used to detect plasma bubbles in the African equatorial region during the first 6 months of 2004. To identify these irregularities, the trend of every curve of sTEC against time is subtracted from the original data. The size of the EPBs is estimated by measuring its amplitude in the de-trended time variation of sTEC.  相似文献   

19.
《Journal of Atmospheric and Solar》2002,64(12-14):1505-1510
In order to understand the recent radar observations of rising structures in the plasma densities in the upper E-region during nighttime at equatorial and low latitude stations, an investigation is made to explore the possible relation between the E- and F-region structures. The investigation revealed that the fringe fields associated with the development of equatorial spread-F (ESF) structures initiated by large-scale waves in the zonal direction, can penetrate well below the E-region. These fringe fields pull the structures upward and tilt them left- or right-hand side to generate rising tilted structures in the E-region. The depth of the penetration of the fringe fields from F-region altitudes mainly depends on the wavelength of the initial perturbation. The fringe fields can move the E-region structures upward with varying speeds, even when the background drift during nighttime is downward, depending on the strength of ESF development.  相似文献   

20.
基于三亚(109.6°E,18.4°N)VHF电离层相干散射雷达观测,分析了我国低纬电离层E区场向不规则结构连续性回波的发生特征.研究结果表明:白天,E区连续性回波的多普勒速度范围为-50至25m/s,多普勒宽度主要分布在20至70m/s;连续性回波的高度大约以1km/h的速度缓慢下降,与偶发E层(Es)底部所在高度(hbEs)有很好的相关性,表明在背景电场影响下,Es经梯度漂移不稳定性产生场向不规则结构,引起E区连续性回波.夜间,E区连续性回波的多普勒速度范围为-50至50m/s,多普勒宽度为20至110m/s,回波在时间-高度-强度图上常呈现多层结构,可能与潮汐引起的多个离子层相关;而E区连续性回波的短暂中断,以及120km以上高E区连续性回波的发生,则可能归因于赤道扩展F极化电场的影响.此外,对E区连续性回波多普勒速度与全天空流星雷达风场观测的比较发现,在100km以下,多普勒速度与子午风场有很好的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号