首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Millstone Hill incoherent scatter radar (42.6°N, 71.5°W) and the nearby Durham meteor wind radar (43.1°N, 70.9°W) have been used to study the structure of the winds in the mesosphere and lower thermosphere and to investigate the propagation of tidal components from the mesosphere into the lower thermosphere. In general, good agreement is found between the tidal wind amplitudes and phases determined by the two radars, but occasionally, some discontinuities have been observed in the vertical structure of the tidal components in the 90–110 km region. In order to validate the accuracy of the two techniques and the methodologies used in determining neutral winds, two common-volume experiments were conducted in 1996 and 1997 in which the two radar beams were overlayed at an altitude of 100 km. The horizontal components of the measured radar line-of-sight velocities during day-time periods were then compared at the overlapping altitudes of 95–100 km. Night-time measurements were also made using a Fabry–Perot Interferometer co-located with the radar at Millstone Hill which observed the Doppler shift of the atomic oxygen green line emission in the mesosphere. Good overall agreement is found between the instruments within the statistical uncertainties of the measurement techniques, although some differences have been found that are explained by consideration of the data statistics, the exact overlap of common volume within the different beam sizes, and the presence of altitude gradients and small scale irregularities in the sampled volumes of the atmosphere.  相似文献   

2.
A simple new technique for measuring gravity-wave activity using meteor radars is described. The technique uses the variance of horizontal wind velocities measured by individual meteors as a proxy for the activity of the gravity-wave field. It is sensitive to gravity waves with horizontal wavelengths of up to about 400 km and periods up to about 3 h. The technique can be used to investigate the vertical structure of the gravity-wave field at heights between approximately 80 and 100 km and with a time resolution of approximately 6 h. The technique is demonstrated using data from an all-sky meteor radar based at Rothera, Antarctica (68°S, 68°W). Observations made over Rothera for 2006 and 2007 reveal a seasonal behaviour with a semi-annual cycle in wave activity. Wave activity maximises in summer and winter and minimises at the equinoxes. Monthly mean gravity-wave activity increases with height in all seasons except in summer when gravity-wave variances show little or no increase with height below 90 km. Comparisons between the gravity-wave activity determined by this meteor-variance technique and other measurements at similar latitudes in the Antarctic reveal generally good agreement.  相似文献   

3.
In this work, we use a semi-empirical model of the micrometeor input function (MIF) together with meteor head-echo observations obtained with two high power and large aperture (HPLA) radars, the 430 MHz Arecibo Observatory (AO) radar in Puerto Rico (18°N, 67°W) and the 450 MHz Poker flat incoherent scatter radar (PFISR) in Alaska (65°N, 147°W), to study the seasonal and geographical dependence of the meteoric flux in the upper atmosphere. The model, recently developed by Janches et al. [2006a. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. Journal of Geophysical Research 111] and Fentzke and Janches [2008. A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function observed at arecibo. Journal of Geophysical Research (Space Physics) 113 (A03304)], includes an initial mass flux that is provided by the six known meteor sources (i.e. orbital families of dust) as well as detailed modeling of meteoroid atmospheric entry and ablation physics. In addition, we use a simple ionization model to treat radar sensitivity issues by defining minimum electron volume density production thresholds required in the meteor head-echo plasma for detection. This simplified approach works well because we use observations from two radars with similar frequencies, but different sensitivities and locations. This methodology allows us to explore the initial input of particles and how it manifests in different parts of the MLT as observed by these instruments without the need to invoke more sophisticated plasma models, which are under current development. The comparisons between model predictions and radar observations show excellent agreement between diurnal, seasonal, and latitudinal variability of the detected meteor rate and radial velocity distributions, allowing us to understand how individual meteoroid populations contribute to the overall flux at a particular location and season.  相似文献   

4.
Validation of HRDI MLT winds with meteor radars   总被引:1,自引:0,他引:1  
A validation study of the mesospheric and lower-thermospheric (MLT) wind velocities measured by the High-Resolution Doppler Imager (HRDI) on board the Upper-Atmosphere Research Satellite (UARS) has been carried out, comparing with observations by meteor radars located at Shigaraki, Japan and Jakarta, Indonesia. The accuracy of the HRDI winds relative to the meteor radars is obtained by a series of simultaneous wind measurements at the time of UARS overpasses. Statistical tests on the difference in the wind vectors observed by HRDI and the meteor radars are applied to determine whether the wind speed has been overestimated by HRDI (or underestimated by the MF radars) as previously noticed in HRDI vs. MF radar comparisons. The techniques employed are the conventional t-test applied to the mean values of the paired wind vector components as well as wind speeds, and two nonparametric tests suitable for testing the paired wind speed. The square-root transformation has been applied before the Mests of the wind speed in order to fit the wind-speed distribution function to the normal distribution. The overall results show little evidence of overestimation by HRDI (underestimation by meteor radars) of wind velocities in the MLT region. Some exceptions are noticed, however, at the altitudes around 88 km, where statistical differences occasionally reach a level of significance of 0.01. The validation is extended to estimate the precision of the wind velocities by both HRDI and meteor radars. In the procedure, the structure function defined by the mean square difference of the observed anomalies is applied in the vertical direction for the profile data. This method assumes the isotropy and the homogeneity of variance for the physical quantity and the homogeneity of variance for the observational errors. The estimated precision is about 6m s for the Shigaraki meteor radar, 15 m s–1 for the Jakarta meteor radar, and 20 m s–1 for HRDI at 90-km altitude. These values can be used ot confirm the statistical significance of the wind field obtained by averaging the observed winds.  相似文献   

5.
北京MST雷达探测中间层-低热层观测结果初步分析   总被引:1,自引:0,他引:1       下载免费PDF全文
北京MST雷达是子午工程建设的国内仅有的两部MST雷达之一,为研究其在中间层-低热层MLT区域的探测能力以及数据可靠性,本文应用北京MST雷达2012、2013两年高模式数据,从数据获取率、与廊坊流星雷达测风对比以及风场时空分布特征三个方面进行初步分析.结果是:(1)数据获取率日变化特征为:白天65~100km均可获取数据,数据获取率的高值区主要集中在70~80km,最大值可达80%;夜间主要集中在80~100km,数据获取率在30%及以下.表明该MST雷达白天可以探测到电离层D层和E层低层,夜间D层消失,只探测到E层低层.季节变化特征为:夏季白天可获取数据的时间和高度区间都比较大,春季次之,冬季最小.夏季白天以及日落后1h内可探测到120km.(2)对北京MST雷达与廊坊流星雷达2012年5月份、80~100km高度区间测量的水平风进行对比分析,二者测风结果在时空分布上有很好的一致性,表明MST雷达探测数据是可靠的.(3)2012年和2013年相应月份平均的纬向风、经向风时空分布特征有较高的一致性,并与HWM07模式结果也基本一致.上述初步分析结果表明,北京MST雷达对中间层-低热层60~120km高度区域已具备较强的探测能力,所得结果将可用于MLT过程揭示与驱动因子研究,并可与该高度上其他探测手段作综合研究.  相似文献   

6.
Based on the horizontal winds measured using SKiYMET meteor wind radar during the period of June 2004–May 2007, the seasonal and interannual variability of the diurnal and semidiurnal amplitudes and phases in the mesospheric and lower thermospheric (MLT) region over a low-latitude station Trivandrum (8.5°N) are investigated. The monthly values of amplitudes and phases are calculated using a composite day analysis. The zonal and meridional diurnal tidal amplitudes exhibit both annual and semiannual oscillations. The zonal and meridional components of semidiurnal tide show a significant annual oscillation. The phase values of both diurnal and semidiurnal tides exhibit annual oscillation above 90 km. The effect of background wind in the lower atmosphere on the strength of diurnal tidal amplitudes in the MLT region is studied. The effect of diurnal tides on the background wind in the lower thermosphere is also discussed.  相似文献   

7.
Continuous MF and meteor radar observations allow detailed studies of winds in the mesosphere and lower thermosphere (MLT) as well as temperatures around the mesopause. This height region is characterized by a strong variability in winter due to enhanced planetary wave activity and related stratospheric warming events, which are distinct coupling processes between lower, middle and upper atmosphere. Here the variability of mesospheric winds and temperatures is discussed in relation with major and minor stratospheric warmings as observed during winter 2005/06 in comparison with results during winter 1998/99.Our studies are based on MF radar wind measurements at Andenes (69°N, 16°E), Poker Flat (65°N, 147°W) and Juliusruh (55°N, 13°E) as well as on meteor radar observations of winds and temperatures at Resolute Bay (75°N, 95°W), Andenes (69°N, 16°E) and Kühlungsborn (54°N, 12°E). Additionally, energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the changes of winds, turbulence and the gravity wave activity in the mesosphere in relation to the planetary wave activity in the stratosphere.Observations indicate an enhancement of planetary wave 1 activity in the mesosphere at high latitudes during major stratospheric warmings. Daily mean temperatures derived from meteor decay times indicate that strong warming events are connected with a cooling of the 90 km region by about 10–20 K. The onset of these cooling processes and the reversals of the mesospheric circulation to easterly winds occur some days before the changes of the zonal circulation in the stratosphere start indicating a downward propagation of the circulation disturbances from the MLT region to the stratosphere and troposphere during the stratospheric warming events. The short-term reversal of the mesospheric winds is followed by a period of strong westerly winds connected with enhanced turbulence rates and an increase of gravity wave activity in the altitude range 70–85 km.  相似文献   

8.
We introduce a simple but effective order statistics filter for the pulse-level interference and meteor processing of Arecibo ionosphere observation data. Using this filter and the techniques introduced by Wen et al. [2005. Adaptive filtering for the separation of incoherent scatter and meteor signals for Arecibo Observation Data. Journal of Atmospheric and Solar-Terrestrial Physics 67, 1190–1195] we effectively remove/separate the unwanted signals, such as impulsive interference and meteor returns, encountered during incoherent scatter radar (ISR) observations of the ionosphere. We further analyze the separated signals to obtain uniquely “cleaned” incoherent scatter power data and scientifically valuable meteor parameters. We present the processed incoherent scatter results from 22/23 March 2004 observations and the altitude and the speed distributions of the separated meteor signals. The nighttime photochemical E-region is clearly revealed for the first time as a result of meteor and interference removal. Additionally, these results reveal the first major bias in large aperture radar meteor headecho results—the meteor speed distribution is flattened by the absence of at least 50% of the events with duration less than 10 ms revealed by meteor-specific observations. Meteor data derived from standard incoherent scatter data always displays this bias.  相似文献   

9.
Detailed comparisons have been completed between the MF radars (MFR) in the Canadian prairies and three other systems: two ground-based Fabry-Perot interferometers (FPI) and the UARS high resolution Doppler imager (HRDI) system. The radars were at Sylvan Lake (52°N, 114°W), Robsart (49°N, 109°W) and the main continuing facility is at Saskatoon (52°N, 107°W). Statistical comparisons of hourly mean winds (1988–1992) for the Saskatoon MFR and FPI (557.7 nm green line) using scatter plots, wind speed-ratios, and direction-difference histograms show excellent agreement for Saskatoon. No serious biases in speeds or directions occur at the height of best agreement, 98 km. If anything, the MFR speeds appear bigger. The same applies to the Sylvan Lake MFR and Calgary FPI, where the best height is 88 km. In both cases these are close to the preferred heights for the emission layers. Differences between measurements seen on individual days are likely related to the influence of gravity waves (GW) upon the optical and radar systems, each of which have inherent spatial averaging (350, 50 km respectively), as well as the spatial difference between the nominal measurement locations. For HRDI, similar statistical comparisons are made, using single-overpass satellite winds and hourly means (to improve data quality) from MFR. Heights of best agreement, based upon direction-difference histograms, are shown; there is a tendency, beginning near 87 km, for these MFR heights to be 2 or 3 km greater than the HRDI heights. Speeds at these heights are typically larger for the satellite (MFR/HRDI = 0.7-0.8). Reasons for the differences are investigated. It is shown that the estimated errors and short-term (90 min) differences are larger for HRDI than for the MFR, indicating more noise or GW contamination. This leads to modest but significant differences in median speed-ratio (MFR/HRDI < 1). Also, comparison of the two systems is made under conditions when they agree best and when they show large disagreement. For the latter cases both systems show higher relative errors, and the HRDI vectors are frequently small. It is suggested that spatial or temporal GW wind fluctuations are the likely cause of the larger HRDI-MFR disagreement when wind speeds are small. No satisfactory explanation exists for the overall discrepancy is speeds between the MFR and HRDI.  相似文献   

10.
距离扩展流星尾迹回波 (RSTE,range spread trail echo)观测通常采用高功率大孔径雷达.本文利用三亚 (18.4°N,109.6°E) VHF雷达观测,分析研究了小功率VHF雷达观测的RSTE特征.结果表明,三亚VHF雷达在相干散射模式观测的RSTE,其发生和演化的主要形态特征类似高功率大孔径雷达的观测结果.通过2011年8月期间,三亚VHF雷达相干散射模式观测的RSTE,与同时的全天空流星模式观测的镜面流星尾迹(SE,specular trail echo)数据,统计分析了RSTE和SE随地方时以及高度的变化,发现短持续时间RSTE(小于等于15 s)与SE具有类似的时间-高度变化特征,而长持续时间RSTE(大于等于15 s)发生的峰值时间,相比SE和短持续时间RSTE向晨侧偏移,且长持续时间RSTE对高度的依赖性比短持续时间RSTE显著.此外,全天空流星模式观测SE 的数量远多于相干散射模式观测的RSTE数量,可能与不同模式下的观测角度、波束宽度等因素相关.  相似文献   

11.
Long period variations in the mesosphere wind have been observed for some time by ground-based radars. These planetary scale disturbances have reoccurring periods at or near 5–7, 10, and 16 days and at times dominate the wind field at mesospheric heights. Recently, due to the continuous operation of several of the MLT radars and the availability of measurements from the UARS satellite, it has been possible to compare observations during periods of large planetary wave activity. Wind measurements from four MLT radars; the meteor radars at Durham, NH (43°N,71°W) and Sheffield, UK (53°N,2°W) and MF radars at Urbana, IL (40°N,88°W) and Saskatoon, Canada (52°N,107°W) were compared with the HRDI measurements during intervals when 7-d planetary waves were present. Wind data from the HRDI instrument on UARS has been processed to show the latitudinal structure and the seasonal variation of the planetary scale wind variation. The phases and amplitudes of the waves as determined by both the satellite and the radars are in good agreement. The ground-based measurements show large modulation of tides by these long period components, and also show comparable responses of these low frequency components over thousands of kilometers. The satellite and the ground-based results both indicate a preponderance of wave occurrence during the equinoxes and at preferred latitudes.  相似文献   

12.
Continuous MF radar measurements of mesospheric mean winds are in progress at the observatories in Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). The observations at Yamagawa and Wakkanai were started in August 1994 and September 1996, respectively. The real-time wind data are used for the study of major large scale dynamic features of the middle atmosphere such as mean winds, tides, planetary waves, and gravity waves, etc. In the present study of mean winds, we have utilized the data collected until June 1999, which include the simultaneous observation period of little more than two and a half years, for the two sites. The database permits us to draw conclusions on the characteristics of mean winds and to compare the mean wind structure over these sites. The mean prevailing zonal winds at both sites are dominated by westward/eastward motions in summer/winter seasons below 90 km. Meridional circulation at meteor heights is generally southward during most times of the year and it extends to lower mesospheric heights during summer also. The summer westward jet at Wakkanai is consistently stronger than those at Yamagawa. However, the winter eastward winds have identical strength at both locations. Meridional winds also show larger values at Wakkanai. The mean wind climatology has been examined and compared with the MU radar observations over Shigaraki (34.9°N, 136.1°E). The paper also presents the results of the comparison between the MF radar winds and the latest empirical model values (HWM93 model) proposed by Hedin et al. (1996. Journal of Atmospheric and Terrestrial Physics 58, 1421–1447). Hodograph analyses of mean winds conducted for the summer and winter seasons show interesting similarities and discrepancies.  相似文献   

13.
We present a model that describes the decay of beam generated Langmuir waves into ion-acoustic waves in the topside ionosphere. This calculation is done within the frame of the weak turbulence approximation. We study the spectral signature of such a process as seen by a VHF incoherent scatter radar. An incoherent scatter (IS) spectrum is characterized by two maxima at kradar and −kradar, the right and left ion lines respectively. It is shown that, for reasonable beam parameters, the parametric decay of beam-generated Langmuir waves can enhance either the right, the left or both ion lines simultaneously. The shape of the spectrum can change drastically on time scale of about 0.1 to 1 s. The role of the beam parameter as well as the ionospheric parameters is also investigated. For a given beam number density, the beam energy or the background density are important to trigger either the left or the right ion line. A large energy spread of the beam or low electron collision frequencies can explain the simultaneous observations of the left and the right ion line. The importance of the electron collision frequency can explain the altitude distribution of the coherent echoes observed by incoherent scatter radars.  相似文献   

14.
Semidiurnal tidal features have been examined in the Mesosphere and Lower Thermosphere (MLT) from the long-term (2002–2007) meteor wind data over Maui (20.75°N, 156.43°W). Amplitude and phase obtained from the harmonic analysis exhibit large day to day variability. Mean amplitude obtained from the monthly mean data over the observation period is found to vary within ~8–28 m/s and 10–32 m/s for the zonal and meridional winds, respectively. The amplitude has revealed clear semiannual oscillation (SAO) pattern with maxima during solstices and altitudinal growth in both wind components. Significant resemblance in its variability with other observations carried out from the low latitude sites all over the globe is obtained. Vertical wavelength estimated from the phase gradients exposes large values (>90 km) in all seasons. Contribution of the semidiurnal tide to the total tidal variability in the MLT is found to vary over wide range throughout the year with generally higher influence during winter season over diurnal and terdiurnal components.  相似文献   

15.
We present a study of ionospheric and thermospheric response during a November 9–10, 2004 major geomagnetic storm event (DsT ~?300 nT). We utilize the North American sector longitude chain of incoherent scatter radars at Arecibo, Millstone Hill, and Sondrestrom, operating as part of a coordinated international mesosphere/lower thermosphere coupling study experiment. Total electron content (TEC) determinations from global positioning system (GPS) ground receivers, ground magnetometer traces from the Canadian CANOPUS array, Defense Meteorological Satellite Platform (DMSP) topside data, and global convection patterns from the SuperDARN radar network are analyzed to place the detailed radar data in proper mesoscale context. The plasmaspheric boundary layer (PBL) expanded greatly in the dusk sector during ring current intensification to span more than 25° of magnetic latitude, reaching as far south as 30° invariant latitude. Strong sub-auroral polarization stream velocities of more than 1 km/s were accompanied by large upwards thermal O+ fluxes to the overlying magnetosphere. The large PBL expansion subsequently exposed both Millstone Hill and Sondrestrom to the auroral convection pattern, which developed a complex multicell and reverse convection response under strongly northward IMF conditions during a period of global interplanetary electric field penetration. Large traveling atmospheric and ionospheric disturbances caused significant neutral wind and ion velocity surges in the mid-latitude and tropical ionosphere and thermosphere, with substorm activity launching equatorward neutral wind enhancements and subsequent mid-latitude dynamo responses at Millstone Hill. However, ionosphere and thermosphere observations at Arecibo point to significant disturbance propagation modification in the post-dusk sector PBL region.  相似文献   

16.
An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70/110 km), extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.  相似文献   

17.
Over the past decade, High Power and Large Aperture (HPLA) radars have been widely utilized for the study of sub-millimeter extraterrestrial particles via the detection of the meteor head-echo. These observations have been a successful tool in the study of the sporadic meteor background, however, they have been limited by the lack of precise knowledge of the particle's location within the radar beam and its absolute trajectory and velocity. This limitation prevents for example the accurate determination of the meteors radiant and orbit. Interferometry measurements of the head-echo has been proven to be a detection technique that satisfies this need. Unfortunately very few radars are capable of performing them. We have developed a methodology which takes advantage of the multi-receiving capabilities of the 450 MHz Poker Flat Incoherent Scatter Radar (PFISR) enabling us to utilize the phased array of crossed-dipoles as an interferometer. This new PFISR capability allows us to determine the instantaneous position of meteors within the radar beam. This enables us to determine absolute velocities and ultimately meteor radiant and orbit around the Sun. In this work, we present initial results from 9 h of observations during which 142 particles were individually detected by the three different receiving channels simultaneously. For these meteors absolute velocities were obtained and meteor dynamical, physical and radiant properties were derived.  相似文献   

18.
We compare meteor radar measurements of the MLT region winds at Santa Maria, Brazil (29.7°S, 53.8°W) with the Horizontal Neutral Wind Model (HWM-93) and the Global Scale Wave Model (GSWM-00). The observed annual variation of the prevailing zonal wind disagrees in some respects with the HWM-93 model. Also, the zonal diurnal tide amplitude shows an annual variation, whereas that of the GSWM-00 is semiannual, and its vertical wavelength is smaller than that suggested by the model. The observed semidiurnal tide shows seasonal and inter-annual variations and the phase is evanescent during almost the whole year.  相似文献   

19.
The AMOR meteor radar can measure meridional winds in the meteoric region of 80–120 km with excellent spatial resolution. This paper gives details of the Doppler section of the AMOR system. Analysis techniques are described that enable the use of very short-lived echoes, which when combined with the high sensitivity of the AMOR radar provides a large data set of wind measurements. Results for a 5 day period are presented at various heights indicating a vertically propagating semi-diurnal tide.  相似文献   

20.
In an effort to study the interannual variation of mesospheric (65–90 km altitude) mean winds, 10 years (1986–1995) of wind data collected with the MU radar at Shigaraki, Japan (34.9°N, 136.1°E) have been analysed. The analysis reveals that the mean zonal wind circulation in the mesosphere is dominated by an annual variation. The summer westward flow in the mesosphere shows a smooth variation with a peak value in the range 40–60 m/s in June/July. In contrast to the summer westward winds, the winter eastward winds exhibit much more variability. In some years it is found that the winds exceed even 60 m/s and the peak value may occur in any one of the winter months. Scrutiny of the duration of the summer westward winds reveals a two-year periodicity, which has been compared with the quasi-biennial oscillation (QBO) phases at the equator. The search for a dependence of the mean wind on solar activity does not reveal any indications of it. Ten-year averaged winds are compared with the model atmosphere, CIRA-86, values and certain agreements and disagreements are pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号