首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Variations in the global atmospheric electric circuit are investigated using a wide range of globally spaced instruments observing VLF (∼10 kHz) waves, ELF (∼300 Hz) waves, Schumann resonances (4–60 Hz), and the atmospheric fair weather electric field. For the ELF/VLF observations, propagation effects are accounted for in a novel approach using established monthly averages of lightning location provided by the Lightning Image Sensor (LIS) and applying known frequency specific attenuation parameters for daytime/nighttime ELF/VLF propagation. Schumann resonances are analyzed using decomposition into propagating and standing waves in the Earth-ionosphere waveguide. Derived lightning activity is compared to existing global lightning detection networks and fair weather field observations. The results suggest that characteristics of lightning discharges vary by region and may have diverse effects upon the ionospheric potential.  相似文献   

2.
The monitoring of global lightning activity and its spatial and temporal variations is known to be very essential for the study of global warming, the subject of greatest concern to human beings on planet Earth today. As a method of remote sensing for the global lightning distribution, we have proposed an inverse problem by using the data of natural electromagnetic noise in the ELF (extremely low frequency) Schumann resonance (SR) band observed simultaneously at a few stations around the world. The fundamentals of this inversion problem (or ELF tomography) to the SR data have been presented and the first attempt to deduce the global lightning distribution by means of the real SR data has been performed, which has indicated a possibility of snapshots of well-known thunderstorm centers on the globe. This ELF tomography consists of two stages. The first stage is the inversion of the ELF field power spectra to the distribution of lightning intensity by distance relative to an observation point. The obtained distance profiles of intensity of sources at a few stations are used as tomographic projections for reconstructing a spatial distribution of sources in the second stage. Maps of the global lightning distributions constructed by the result of inversions of ELF background field spectra obtained from three stations around the world show that the most active regions vary meridionally on the diurnal time scale being connected mainly with continental areas in the tropics. We do hope that this kind of inversion method to multi-stationed ELF data will be of great importance in the future.  相似文献   

3.
Since 1998, the gradient of the near-Earth atmospheric electric field potential (|Ez|) has been continuously registered at Vostok Antarctic station within the scope of the joint Russian-Australian project. The data of the continuous 10-day period of fine weather in April 1998 have been selected for the following analysis. The field |Ez| behavior at Vostok station was compared with a number of lightning strokes obtained from data of the ground-based network of electromagnetic measurements. It has been found out that the average hourly values of |Ez| evidently negatively correlate with the number of intense lightning strokes. The causes of these relations are discussed. The obtained results are interpreted based on a theory of global electric circuit.  相似文献   

4.
Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.  相似文献   

5.
对观测资料的分析表明,甘肃地区和海南岛的地闪特征具有很大差异。海南岛负地闪(P型)首次回击前的电场变化波形与国外的报道类似,而甘肃地区仅有30%左右的负地闪属P型,约70%的负地闪首次回击前的电场变化波形具有明显的云闪特征(C型负地闪)。海南岛没有发现正地闪,甘肃地区有正地闪。该两地区存在两类电结构不同的雷暴,两类雷暴中地闪放电过程及特征的很大差异,说明我国的防雷规范及措施很可能需要考虑雷暴的地区差异性。  相似文献   

6.
The characteristics (annual and diurnal cycle, polarity, multiplicity and first stroke peak current) of ∼4.3×106 cloud-to-ground flashes recorded in the Iberian Peninsula during the first decade of measurements of the lightning detection network installed in Spain are analyzed. The mean monthly variation shows maximum lightning activity between May and September, while minimum values are observed in January and February. The mean diurnal cycle shows maximum values at 1700 LT and minimum values at around 1000 LT. The average maximum flash density (not corrected for detection efficiency) is 2.1 flashes km−2 year−1. Maximum lightning activity is associated with mountainous areas. The effect of the Mediterranean Sea is also seen. The percentage of positive flashes is 9%, although this changes over the year from 6.5% in June to 22.6% in January. The average multiplicity is found to be 2.0 for the negative flashes and 1.1 for the positive flashes, and the percentages of single-stroke flashes are 53.6% and 89%, respectively. The monthly distribution of multiplicity for negative flashes peaks in the summer and minimum values are found in the winter. The multiplicity of the positive flashes does not seem to be function of the month. The median (mean) first stroke peak currents are found to be 23.5 kA (27.3 kA) for the negative flashes and 35.3 kA (47.1 kA) for the positive flashes. For both polarities, the peak current is higher in the summer than in the winter. The percentage of positive flashes and the mean peak currents for negative flashes are higher over the sea areas than over land.  相似文献   

7.
Vertical coupling in the low-latitude atmosphere–ionosphere system driven by the 5-day Rossby W1 and 6-day Kelvin E1 waves in the low-latitude MLT region has been investigated. Three different types of data were analysed in order to detect and extract the ∼6-day wave signals. The National Centres for Environmental Prediction (NCEP) geopotential height and zonal wind data at two pressure levels, 30 and 10 hPa, were used to explore the features of the ∼6-day waves present in the stratosphere during the period from 1 July to 31 December 2004. The ∼6-day wave activity was identified in the neutral MLT winds by radar measurements located at four equatorial and three tropical stations. The ∼6-day variations in the ionospheric electric currents (registered by perturbations in the geomagnetic field) were detected in the data from 26 magnetometer stations situated at low latitudes. The analysis shows that the global ∼6-day Kelvin E1 and ∼6-day Rossby W1 waves observed in the low-latitude MLT region are most probably vertically propagating from the stratosphere. The global ∼6-day W1 and E1 waves seen in the ionospheric electric currents are caused by the simultaneous ∼6-day wave activity in the MLT region. The main forcing agent in the equatorial MLT region seems to be the waves themselves, whereas in the tropical MLT region the modulated tides are also of importance.  相似文献   

8.
Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation sources and then extracting the lightning channel,it can accurately obtain the length of the channel.To validate the feasibility of the approach,a simulation experiment is designed,and it shows the length error is no more than 10%.The relationship between the NO production of per unit arc length and atmospheric pressure obtained in laboratory is applied to the NOX production of per unit flash length at different altitudes in this paper.The channel length and the NOX production of 11 negative cloud-to-ground flashes and 59 intracloud flashes in an isolated thunderstorm in the northeastern Qinghai-Tibet Plateau are calculated.The results show that the average channel lengths of per cloud-to-ground and intracloud flash are 28.9 and 22.3 km respectively;the average NOX productions of per cloud-to-ground and intracloud flash are 1.89×1025 and 0.42×1025 molecules,respectively.  相似文献   

9.
Lightning discharges monitored by the SAFIR network system in Poland have been additionally identified over the 100×100 km area near Warsaw by single-point independent recordings of electric field and Maxwell current rapid changes. The data collected in summer thunderstorm days of 2002 showed some untypical properties of the lightning discharges which are rarely observed. Especially remarkable was a number of ground multi-stroke flashes with the return strokes (RS) which transported to the earth charges of opposite signs. Bipolar flashes (BF) of this kind were mostly involved in the events in which the nearby intracloud (ic) and cloud-to-ground (c-g) discharges were very closely associated in time. Events of such a close collocation of two different types of lightning discharges, previously called the complex lightning discharge events (CLDE), were quite often observed during summer thunderstorms in Poland. The events of this kind, i.e. 8 flashes, identified by the SAFIR detection system as BF’s present the multiple stroke flashes of the mean horizontal separation distance between striking points of particular RS equal to (2.8 ± 2.1) km and of the mean time interval between strokes of (46.8 ± 74.4) ms. The time separation between the observed BF and the adjacent ic flashes was from 0.1 to 335 ms, and horizontal separation distance between them ranged from 1.8 to 14.5 km. The multiplicity of the recorded BF’s ranged from 2 to 4 strokes. Four of these BF’s followed the ic discharge, but the other three preceded the ic and one was alone with no close ic.  相似文献   

10.
During the summer of 2005, transient luminous events were optically imaged from the French Pyrénées as part of the EuroSprite campaign. Simultaneously, extremely low frequency (ELF: 3–3000 Hz) and broadband very low frequency (VLF: 3–30 kHz) data were recorded continuously at two separate receivers in Israel, located about 3300 km from the area of the parent lightning discharges responsible for the generation of sprites. Additionally, narrowband VLF data were collected in Crete, at about 2300 km away from the region of sprites.The motivation for the present study was to identify the signature of the sprite-producing lightning discharges in the ELF and VLF electromagnetic frequency bands, to qualify and compare their parameters, and to study the influence of the thunderstorm-activated region on its overlaying ionosphere. For the 15 sprites analyzed, their causative positive cloud-to-ground (+CG) discharges had peak current intensities between +8 and +130 kA whereas their charge moment changes (CMC) ranged from 500 to 3500 C km. Furthermore, the peak current reported by the Météorage lightning network are well correlated with the amplitudes of the VLF bursts, while showing poor correlation with the CMCs which were estimated using ELF methods.Additionally, more than one +CG was associated with six of the sprites, implying that lightning discharges that produce sprites can sometimes have multiple ground connections separated in time and space. Finally, for a significant number of events (33%) an ELF transient was not associated with sprite occurrence, suggesting that long continuing current of tens of ms may not always be a necessary condition for sprite production, a finding which influences the estimation of the global sprite rate based on Schumann resonance (SR) measurements.  相似文献   

11.
Several processes acting below, in and above thunderstorms and in electrified shower clouds drive upward currents which close through the global atmospheric electric circuit. These are all simulated in a novel way using the software package PSpice. A moderate negative cloud-to-ground lightning discharge from the base of a thunderstorm increases the ionospheric potential above the thundercloud by 0.0013%. Assuming the ionosphere to be an equipotential surface, this discharge increases the current flowing in the global circuit and the fair-weather electric field also by 0.0013%. A moderate positive cloud-to-ground lightning discharge from the bottom of a thunderstorm decreases the ionospheric potential by 0.014%. Such a discharge may trigger a sprite, causing the ionospheric potential to decrease by . The time scales for the recovery of the ionospheric potential are shown to be , which is of the same order as the CR time constant for the global circuit. Knowing the global average rate of lightning discharges, it is found that negative cloud-to-ground discharges increase the ionospheric potential by only 4%, and that positive cloud-to-ground discharges reduce it by 3%. Thus, overall, lightning contributes only 1%—an almost insignificant proportion—to maintaining the high potential of the ionosphere. It is concluded that the net upward current to the ionosphere due to lightning is only . Further, it is concluded that conduction and convection currents associated with “batteries” within thunderclouds and electrified shower clouds contribute essentially equally ( each) to maintaining the ionospheric potential.  相似文献   

12.
基于小波的地闪首次回击辐射场的多重分形分析   总被引:5,自引:0,他引:5       下载免费PDF全文
利用2002年夏季青海野外观测慢天线电场变化仪资料,应用小波变换模极大方法对地闪首次回击辐射场的检测及多重分形谱特征进行了分析.发现小波分解在小尺度上的时间变异系数在回击主脉冲峰处(回击点)呈现明显的尖峰,据此可对回击点进行快速可靠的检测;地闪回击辐射场多重分形谱可用推广的多重分形二项倍增串级公式比较精确地拟合,最小标度指数及谱宽度平均分别为-011和15,是重要的回击特征参数,而小波及多重分形应是闪电信号处理的重要工具.  相似文献   

13.
太阳活动,磁暴与震前大气电场异常关系研究   总被引:5,自引:2,他引:3  
通过对太阳活动,磁暴与大气电场异常关系的研究及1997年9月至1998年8月白家疃台大气电场和磁暴实际观测结果的分析,论述了震前观测到的大气电场负异常现象与太阳活动和磁暴现象无明显相关。  相似文献   

14.
We demonstrate that narrowband measurements can be used for rudimentary ranging of cloud-to-ground lightning flashes. The system at present responds to both intra-cloud and cloud-to-ground lightning; ranging is demonstrated for a subset of flashes known to be cloud-to-ground lightning. The system uses a ferrite-core antenna with a length of about 4 cm and diameter 4 mm, and operates on a narrow band at about 1 MHz, close to the HF band (3–30 MHz). It downmixes the signal to audio frequencies and operates in a manner which is very similar to an AM radio. The system triggers on all impulses which exceed a given adjustable threshold above the ambient noise level, and records 1 s of data. Such a system was used to collect lightning-caused electromagnetic disturbances during summer 2006 in Finland. The output is compared to two scientifically verified references: a flat-plate broadband antenna measuring the vertical electric field and a commercial lightning location network giving flash location. A key aim of the system is to reduce the information to as few parameters as possible. Peak intensity and full-flash energy were used as simple parameters. It is shown that accurate flash-by-flash ranging is not possible with this method; however, it is shown that the method can be used to track clusters of ground flashes within a range of about 50–100 km with an accuracy of about 10 km.  相似文献   

15.
通过对比崇明地区地闪及崇明地震台地球物理观测资料,发现受地闪引起的电磁场变化的直接作用或对仪器元件的间接作用,地磁、地电、电磁扰动和水位观测干扰比例较高,干扰幅度与地闪距离及形成的电流强度有关。具体干扰形态如下:①对电磁扰动干扰表现为单向突跳和测值的整体抬升;②对地磁测项干扰表现为正负方向的单点突跳;③对大地电场干扰表现为大幅震荡;④对水位观测干扰表现为大幅突跳。  相似文献   

16.
用宽带干涉仪观测云内闪电通道双向传输的特征   总被引:5,自引:6,他引:5       下载免费PDF全文
利用闪电宽带干涉仪系统对闪电的观测表明,地闪和云闪的云内闪电通道都存在双向发展的特征. 闪电在云中负电荷区域初始激发以后,在通道两端发生向不同方向同时发展的击穿过程. 这两种击穿过程均产生较强的辐射,且辐射频谱特征十分相似,表明云内闪电通道两端发生的击穿过程可能均为负击穿过程. 相应电场变化表明闪电通道双向发展期间伴随着负电荷的向上转移. 这一观测事实与Kasemir早期提出的闪电通道双向发展的概念有一定的差异.  相似文献   

17.
通过对比崇明地区地闪及崇明地震台地球物理观测资料,发现受地闪引起的电磁场变化的直接作用或对仪器元件的间接作用,地磁、地电、电磁扰动和水位观测干扰比例较高,干扰幅度与地闪距离及形成的电流强度有关。具体干扰形态如下:①对电磁扰动干扰表现为单向突跳和测值的整体抬升;②对地磁测项干扰表现为正负方向的单点突跳;③对大地电场干扰表现为大幅震荡;④对水位观测干扰表现为大幅突跳。  相似文献   

18.
Recent Results from Studies of Electric Discharges in the Mesosphere   总被引:3,自引:3,他引:0  
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes (TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant meso-scale effects, but negligible global effects.  相似文献   

19.
Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field information, the propagation characteristic and the electric field change features of the leaders and the grounding behavior of discharge channels are analyzed.In addition, the two-dimensional velocity of the leader was estimated and its correlation with the time interval of the corresponding subsequent return stroke, and that with the peak current of return stroke are investigated. The results show that the average distance between the three obvious grounded points of the first return stroke channel is about 512.7 m, and the average time interval between the pulses of the corresponding electric field fast changes is 3.8 μs. Further, the average time interval between electric field pulses from the stepped leader is smaller than that of normal single grounding lightning. The observed lightning in our study has two main channels, namely the left and right channels. Based on our observations, it is clear that the dart leader comes close to the ground in case of the left channel after the first return stroke, but it fails to form a return stroke.However, the right channel exhibits a relatively rare phenomenon in that the subsequent return stroke R2 occurred about 2.1 ms after the dart leader arrived at the ground, which was unusually long; this phenomenon might be attributed to the strong discharge of the first return stroke and insufficient charge accumulation near the grounded point in a timely manner. The two-dimensional velocities for the stepped leader of the two main channels are about 1.23×105 and 1.16×105 m s-1, respectively. A sub-branch of stepped leader for the left channel fails to reach the ground and develops into an attempt leader eventually; this might be attributed to the fact that the main branch connects considerably many sub-branches, which leads to the instantaneous decline of the potential difference between the sub-branch and ground. Furthermore, it might also be because the propagation direction of this sub-branch is almost perpendicular to the atmospheric electric field direction, which is not conducive to charge transfer. The two-dimensional velocities for the dart leaders of five subsequent return strokes are all in the normal range, and they positively correlate with the peak current of the subsequent return stroke.  相似文献   

20.
From a study of thunder/lightning observations in Trivandrum (near dip equator) for selected years between 1853 and 2005, we could find an inverse relation of the same with sunspot activity and associations with enhancements in diurnal range of local geomagnetic declination. The results seem to suggest lightning-associated modulation of E-region dynamo currents in the equatorial ionosphere and the thunderstorm activity near dip equator probably acts as a moderator to regulate electric potential gradient changes in the global electric circuit due to solar activity changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号