首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading‐basin and bank‐filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth‐related water demands. This paper reports on a new cost‐effective surface‐infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48‐day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface‐spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0·5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface‐spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

2.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

3.
Jos C. van Dam 《水文研究》2000,14(6):1101-1117
Single domain models may seriously underestimate leaching of nutrients and pesticides to groundwater in clay soils with shrinkage cracks. Various two‐domain models have been developed, either empirical or physically based, which take into account the effects of cracks on water flow and solute transport. This paper presents a model concept that uses the clay shrinkage characteristics to derive crack volume and crack depth under transient field conditions. The concept has been developed to simulate field average behaviour of a field with cracks, rather than flow and transport at a small plot. Water flow and solute transport are described with basic physics, which allow process and scenario analysis. The model concept is part of the more general agrohydrological model SWAP, and is applied to a field experiment on a cracked clay soil, at which water flow and bromide transport were measured during 572 days. A single domain model was not able to mimic the field‐average water flow and solute transport. Incorporation of the crack concept considerably improved the simulation of water content and bromide leaching to the groundwater. Still deviations existed between the measured and simulated bromide concentration profiles. The model did not reproduce the observed bromide retardation in the top layer and the high bromide dispersion resulting from water infiltration at various soil depths. A sensitivity analysis showed that the amounts of bromide leached were especially sensitive to the saturated hydraulic conductivity of the top layer, the solute transfer from the soil matrix to crack water flow and the mean residence time of rapid drainage. The shrinkage characteristic and the soil hydraulic properties of the clay matrix showed a low sensitivity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff.  相似文献   

5.
In Belgium, IWVA uses managed aquifer recharge (MAR) to recharge the aquifer with treated wastewater generated from the communities to sustain the potable water supply on the Belgian coast. This MAR facility is faced with a challenge of reduced infiltration rates during the winter season when pond water temperatures near 4°C. This study involves the identification of the predominant factor influencing the rate of infiltration through the pond bed. Several factors, including pumping rates, natural recharge, tidal influences of the North Sea and pond-water temperature, were identified as potential causes for variation of the recharge rate. Correlation statistics and linear regression analysis were used to determine the sensitivity of the infiltration rate to the aforementioned factors. Two groundwater flow models were developed in visual MODFLOW to simulate the water movement under the pond bed and to obtain the differences in flux to track the effects of variation of hydraulic conductivity during the two seasons. A 32% reduction in vertical hydraulic gradient in the top portion of the aquifer was observed in winter, causing the recharge rates to fluctuate. Results showed that water temperature caused a 30% increase in hydraulic conductivity in summer as compared with winter and has the maximum impact on infiltration rate. Cyclic variations in water viscosity, occurring because of seasonal temperature changes, influence the saturated hydraulic conductivity of the pond bed. Results from the models confirm the impact on infiltration rate by temperature-influenced hydraulic conductivity.  相似文献   

6.
It is common practice in the United States to use wastewater soil absorption systems (WSAS) to treat domestic wastewater. WSAS are expected to provide efficient, long-term removal of wastewater contaminants prior to ground water recharge. Soil clogging at the infiltrative surface of WSAS occurs due to the accumulation of suspended solids, organic matter, and chemical precipitates during continued wastewater infiltration. This clogging zone (CZ) creates an impedance to flow, restricting the hydraulic conductivity and rate of infiltration. A certain degree of clogging may improve the treatment of wastewater by enhancing purification processes, in part because unsaturated flow is induced and residence times are significantly increased. However, if clogging becomes excessive, the wastewater pond height at the infiltrative surface can rise to a level where system failure occurs. The numerical model HYDRUS-2D is used to simulate unsaturated flow within WSAS to better understand the effect of CZs on unsaturated flow behavior and hydraulic retention times in sandy and silty soil. The simulations indicate that sand-based WSAS with mature CZs are characterized by a more widely distributed flow regime and longer hydraulic retention times. The impact of clogging on water flow within the silt is not as substantial. For sand, increasing the hydraulic resistance of the CZ by a factor of three to four requires an increase in the pond height by as much as a factor of five to achieve the same wastewater loading. Because the degree of CZ resistance directly influences the pond height within a system, understanding the influence of the CZ on flow regimes in WSAS is critical in optimizing system design to achieve the desired pollutant-treatment efficiency and to prolong system life.  相似文献   

7.
Analysis of a vertical dipole tracer test in highly fractured rock   总被引:1,自引:0,他引:1  
The results of a vertical dipole tracer experiment performed in highly fractured rocks of the Clare Valley, South Australia, are presented. The injection and withdrawal piezometers were both screened over 3 m and were separated by 6 m (midpoint to midpoint). Due to the long screen length, several fracture sets were intersected, some of which do not connect the two piezometers. Dissolved helium and bromide were injected into the dipole flow field for 75 minutes, followed by an additional 510 minutes of flushing. The breakthrough of helium was retarded relative to bromide, as was expected due to the greater aqueous diffusion coefficient of helium. Also, only -25% of the total mass injected of both tracers was recovered. Modeling of the tracer transport was accomplished using an analytical one-dimensional flow and transport model for flow through a fracture with diffusion into the matrix. The assumptions made include: streamlines connecting the injection and withdrawal point can be modeled as a dipole of equal strength, flow along each streamline is one dimensional, and there is a constant Peclet number for each streamline. In contrast to many other field tracer studies performed in fractured rock, the actual travel length between piezometers was not known. Modeling was accomplished by fitting the characteristics of the tracer breakthrough curves (BTCs), such as arrival times of the peak concentration and the center of mass. The important steps were to determine the fracture aperture (240 microm) based on the parameters that influence the rate of matrix diffusion (this controls the arrival time of the peak concentration); estimating the travel distance (11 m) by fitting the time of arrival of the centers of mass of the tracers; and estimating fracture dispersivity (0.5 m) by fitting the times that the inflection points occurred on the front and back limbs of the BTCs. This method works even though there was dilution in the withdrawal well, the amount of which can be estimated by determining the value that the modeled concentrations need to be reduced to fit the data (approximately 50%). The use of two tracers with different diffusion coefficients was not necessary, but it provides important checks in the modeling process because the apparent retardation between the two tracers is evidence of matrix diffusion and the BTCs of both tracers need to be accurately modeled by the best fit parameters.  相似文献   

8.
We use a three-dimensional mixed-wet random network model representing Berea sandstone to extend our previous work on relative permeability hysteresis during water-alternating-gas (WAG) injection cycles [Suicmez, VS, Piri, M, Blunt, MJ, 2007, Pore-scale simulation of water alternate gas injection, Transport Porous Med 66(3), 259–86]. We compute the trapped hydrocarbon saturation for tertiary water-flooding, which is water injection into different initial gas saturations, Sgi, established by secondary gas injection after primary drainage. Tertiary water-flooding is continued until all the gas and oil is trapped. We study four different wettability conditions: water-wet, weakly water-wet, weakly oil-wet and oil-wet. We demonstrate that the amounts of oil and gas that are trapped show surprising trends with wettability that cannot be captured using previously developed empirical trapping models. We show that the amount of oil that is trapped by water in the presence of gas increases as the medium becomes more oil-wet, which is opposite from that seen for two-phase flow. It is only through a careful analysis of displacement statistics and fluid configurations that these results can be explained. This illustrates the need to have detailed models of the displacement processes that represent the three-phase displacement physics as carefully as possible. Further work is needed to explore the full range of behavior as a function of wettability and displacement path.  相似文献   

9.
Water and solute movement in a coarse-textured water-repellent field soil   总被引:6,自引:0,他引:6  
Unstable water flow in water-repellent unsaturated soils can significantly affect the processes of infiltration and soil water redistribution. A field experiment was carried out to study the effect of water-repellency on water and bromide movement in a coarse-textured soil in the southwestern part of The Netherlands. The field data were analyzed using a relatively simple numerical model based on the standard Richards' equation for unsaturated water flow and the Fickian-based convection-dispersion equation for solute transport. Water-repellency was accounted for by multiplying the water content and the unsaturated hydraulic conductivity of the soil with F, a factor equal to the volumetric fraction of soil occupied by preferential flow paths resulting from the unstable flow process. The good comparison of simulated and measured bromide concentrations suggests that the model provides a viable method for simulating unstable water flow in water-repellent soils.  相似文献   

10.
Considering all the alterations on hydrology and water quality that urbanization process brings, permeable pavement (PP) is an alternative to traditional impermeable asphalt and concrete pavement. The goal of the PP and other low impact development devices is to increase infiltration and reduce peak runoff flows. These structures are barely used in Brazil aiming stormwater management, one of the big hydrological issues in cities throughout the country, with increasing urbanization rates. The main objective of this paper is the hydraulic characterization of a PP and the assessment of its hydrological efficiency from the point of view of the infiltration process. The study focuses on a pilot area in a parking lot in an urban area (Recife, Brazil). Soil elements filling the voids between concrete elements were sampled (particle size density, water contents) and tested with water infiltration experiments at several points of the 3 m × 1.5 m surface pilot area. Beerkan Estimation of Soil Transfer parameters algorithm was applied to the infiltration experiment data to obtain the hydraulic characteristics of the soil composing the PP surface layer, the concrete grid pavers (with internal voids filled with natural soil) permeability being neglected. Results show that the soil hydraulic characteristics vary spatially within the pilot area and that the soil samples have different hydraulic behaviours. The hydraulic characteristics derived from Beerkan Estimation of Soil Transfer parameters analysis were implemented into Hydrus code to simulate runoff, infiltration and water balance over a year. The numerical simulation showed the good potential of the PP for rainfall–runoff management, which demonstrates that PP can be used to retrofit existing parking infrastructure and to promote hydrological behaviour close to natural soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
We measure the trapped saturations of oil and gas as a function of initial saturation in water-wet sand packs. We start with a water-saturated column and inject octane (oil), while water and oil are produced from the bottom. Once water production has ceased, air (gas) then enters from the top, allowing oil and gas to drain under gravity for different times. Finally water is then injected from the bottom to trap both oil and gas. The columns are sliced and the fluids analyzed using gas chromatography. We find that for high initial gas saturations more gas can be trapped in the presence of oil than in a two-phase (gas/water) system. The residual gas saturation can be over 20% compared to 14% in two-phase flow [Al Mansoori SK, Iglauer S, Pentland CH, Bijeljic B, Blunt MJ. Measurements of non-wetting phase trapping applied to carbon dioxide storage. Energy Procedia 2009;1(1):3173–80]. This is unlike previous measurements on consolidated media, where the trapped gas saturation is either similar or lower to that reached in an equivalent two-phase experiment. For lower initial gas saturation, the amount of trapping follows the initial-residual trend seen in two-phase experiments. The amount of oil trapped is insensitive to initial gas saturation or the amount of gas that is trapped, again in contrast to measurements on consolidated media. More oil is trapped than would be predicted from an equivalent two-phase (oil/water) system, although the trapped saturation is never larger than the maximum reached in two-phase flow (around 11%) [Pentland CH, Al Mansoori SK, Iglauer S, Bijeljic B, Blunt MJ. Measurement of non-wetting phase trapping in sand packs. In: SPE 115697, proceedings of the SPE annual technical conference and exhibition, Denver, Colorado, USA; 21–24 September 2008]. These initially surprising results are explained in the context of oil layer stability and the competition between snap-off and piston-like advance. In two-phase systems, displacement is principally by cooperative piston-like advance with relatively little trapping, whereas in consolidated media snap-off is generally more significant. However, oil layer collapse events during three-phase waterflooding rapidly trap the oil which acts as a barrier to direct water/gas displacement, except by snap-off, leading to enhanced gas trapping.  相似文献   

12.
Modeling unsaturated flow in porous media requires constitutive relations that describe the soil water retention and soil hydraulic conductivity as a function of either potential or water content. Often, the hydraulic parameters that describe these relations are directly measured on small soil cores, and many cores are needed to upscale to the entire heterogeneous flow field. An alternative to the forward upscaling method using small samples are inverse upscaling methods that incorporate soft data from geophysical measurements observed directly on the larger flow field. In this paper, we demonstrate that the hydraulic parameters can be obtained from cross borehole ground penetrating radar by measuring the first arrival travel time of electromagnetic waves (represented by raypaths) from stationary antennae during a constant flux infiltration experiment. The formulation and coupling of the hydrological and geophysical models rely on a constant velocity wetting front that causes critical refraction at the edge of the front as it passes by the antennae. During this critical refraction period, the slope of the first arrival data can be used to calculate (1) the wetting velocity and (2) the hydraulic conductivity of the wet (or saturated) soil. If the soil is undersaturated during infiltration, then an estimate of the saturated water content is needed before calculating the saturated hydraulic conductivity. The hydraulic conductivity value is then used in a nonlinear global optimization scheme to estimate the remaining two parameters of a Broadbridge and White soil.  相似文献   

13.
Water infiltration rate and hydraulic conductivity in vegetated soil are two vital hydrological parameters for agriculturists to determine availability of soil moisture for assessing crop growths and yields, and also for engineers to carry out stability calculations of vegetated slopes. However, any effects of roots on these two parameters are not well‐understood. This study aims to quantify the effects of a grass species, Cynodon dactylon, and a tree species, Schefflera heptaphylla, on infiltration rate and hydraulic conductivity in relation to their root characteristics and suction responses. The two selected species are commonly used for ecological restoration and rehabilitation in many parts of the world and South China, respectively. A series of in‐situ double‐ring infiltration tests was conducted during a wet summer, while the responses of soil suction were monitored by tensiometers. When compared to bare soil, the vegetated soil has lower infiltration rate and hydraulic conductivity. This results in at least 50% higher suction retained in the vegetated soil. It is revealed that the effects of root‐water uptake by the selected species on suction were insignificant because of the small evapotranspiration (<0.2 mm) when the tests were conducted under the wet climate. There appears to have no significant difference (less than 10%) of infiltration rates, hydraulic conductivity and suction retained between the grass‐covered and the tree‐covered soil. However, the grass and tree species having deeper root depth and greater Root Area Index (RAI) retained higher suction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
lINTR0DUCTIONSoiler0si0ncanbeaseriousproblemonsl0pinguplands0fthes0uthemUnitedStatesthatareintensivelycr0pped.Conservati0nprovisionsofthel985U.S.FarmBillmandateddevelopmentofaconservati0nplanonhighlyer0diblelands.Researchwasinitiatedinl9870na28-haareaattheA-E.Nels0nFarrninn0rthernMississippit0determineiftheconservati0nprovisionscouldbeachievedwhileprofitablygr0wingrowcropsincludingcott0n(GosSyPiumhirsutumL.),soybean(GlyciDemax(L.)Merr.),sorghum(SOrghumbicolor(L.)Moench),c0rn(Zeam…  相似文献   

16.
热处理对致密岩石物理性质的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
致密气藏低孔低渗和超低含水饱和度等特征使其潜在水相圈闭损害严重,致密天然气产出表现为多尺度特征.选取泥页岩、致密砂岩和致密碳酸盐岩岩心,开展了100~600℃高温处理对岩心渗透率、孔隙度、重量、长度、直径和声速的影响实验.实验结果表明,碳酸盐岩、致密砂岩和泥页岩的热开裂阈值分别在300~400℃、300~500℃和500~600℃;高温处理后,岩心重量和密度降低,体积增加,泥页岩岩心孔隙度和渗透率提高幅度最显著,600℃处理后声波时差比常温时岩心声波时差提高了1.3倍.热处理消除了水相圈闭和粘土矿物膨胀损害,提高岩石孔隙度和渗透率,恢复或改善致密储层多尺度传质,有利于致密天然气资源开发,但同时高温使岩石破裂,扩展天然裂缝或产生新裂缝,导致工作液漏失,因此,热致裂给勘探开发致密天然气提出了机遇与挑战.  相似文献   

17.
Satoshi  Hirano  Yoshiaki  Araki  Koji  Kameo  Hiroshi  Kitazato  Hideki  Wada 《Island Arc》2006,15(3):313-327
Abstract   A drilling and coring investigation of the Sagara oil field, central Honshu, Japan, was conducted to contribute to the understanding of hydrocarbon migration processes in a forearc basin. Core samples were analyzed to determine lithology, physical properties (specifically gas permeability) and the characteristics of oil occurrence. Gas permeability values greater than approximately 10−11 m2 constitute the basic precondition for any lithology to serve as a potential fluid conduit or reservoir in the Sagara oil field. Cores recovered from the 200.6-m-deep borehole were primarily composed of alternating siltstone, sandstone and conglomerate, all of which are correlated to the late Miocene Sagara Group. Both sandstone and conglomerate can be classified into two types, carbonate-cemented and poorly to non-cemented, based on matrix material characteristics. Oil stains are generally absent in the former lithology and more common in the latter. Variations in physical properties with respect to gas permeability values are directly related to the presence and character of carbonate cement, with higher permeabilities common in poorly to non-cemented rocks. The relationships between lithology, oil-staining, cementation and permeability indicate that cementation preceded oil infiltration and that cementation processes exerted significant control on the evolution of the reservoir.  相似文献   

18.
In this paper we have developed a new method for measuring in situ soil permeability, which is based on the theory of radial gas advection through an isotropic porous medium. The method was tested in the laboratory and at several locations on the island of Vulcano (Aeolian Islands, Italy). It consists of a special device which generates a gas source at a depth of 50 cm and it permits measurement of the relative induced pressure in nearby soil at different depths. The characteristic error of the method was less than 10%. Furthermore, soil permeability measurements were carried out in the island of Vulcano during different periods of the year (between May 2000 and June 2001). A strong decrease in permeability in the upper layers of the soil during and after rainfall was noted, with very poor correlations between the spatial distributions of soil CO2 flux and shallow soil permeability.  相似文献   

19.
The Beerkan method based on in situ single‐ring water infiltration experiments along with the relevant specific Beerkan estimation of soil transfer parameters (BEST) algorithm is attractive for simple soil hydraulic characterization. However, the BEST algorithm may lead to erroneous or null values for the saturated hydraulic conductivity and sorptivity especially when there are only few infiltration data points under the transient flow state, either for sandy soil or soils in wet conditions. This study developed an alternative algorithm for analysis of the Beerkan infiltration experiment referred to as BEST‐generalized likelihood uncertainty estimation (GLUE). The proposed method estimates the scale parameters of van Genuchten water retention and Brooks–Corey hydraulic conductivity functions through the GLUE methodology. The GLUE method is a Bayesian Monte Carlo parameter estimation technique that makes use of a likelihood function to measure the goodness‐of‐fit between modelled and observed data. The results showed that using a combination of three different likelihood measurements based on observed transient flow, steady‐state flow and experimental steady‐state infiltration rate made the BEST‐GLUE procedure capable of performing an efficient inverse analysis of Beerkan infiltration experiments. Therefore, it is more applicable for a wider range of soils with contrasting texture, structure, and initial and saturated water content. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号